Presentation is loading. Please wait.

Presentation is loading. Please wait.

Carry out an investigation of the relationship between the length of a metallic conductor (eg Nichrome Wire) and its resistance.

Similar presentations


Presentation on theme: "Carry out an investigation of the relationship between the length of a metallic conductor (eg Nichrome Wire) and its resistance."— Presentation transcript:

1 Carry out an investigation of the relationship between the length of a metallic conductor (eg Nichrome Wire) and its resistance

2 Introduction

3 Background research outlined and referenced Firstly I researched this topic in my science book. I found relevant information in my book about resistance, such as the fact that resistance is governed by the formula V = IR and is measured in Ohms. Ohms can be measured using a multimeter (O’Callaghan M., Reilly S., Seery A., Exploring Science 2003 p86-88)

4 Background research outlined and referenced Next I found a definition for Resistance on the internet: “A force that opposes the flow of an electrical current around a circuit, so that energy is required to push the charged particles around the circuit” (http://www.sci-journal.org)

5 Background research outlined and referenced I found out from my Science Teacher that a metallic conductor is a wire, for example, copper wire

6 Investigation is stated as a problem statement During the investigation I intend to answer the following question “How does the length of a wire affect it’s resistance”

7 Preparation & Planning

8 Identification of variables Independent Variable: The LENGTH of the nichrome wire. Dependent Variable: The RESISTANCE of the wire Fixed Variables: TYPE of Wire SETTING on Multimeter THICKNESS of Wire

9 A Fair Test where appropriate is outlined To ensure a fair test, we ensure that the fixed variables remain the same. ieTYPE of wire THICKNESS of wire SETTING on multimeter This way, we are sure that when we change the length of the wire, this and this alone, will change its resistance.

10 Resource List Complete Length of wire Pliers Multimeter Meter Stick Safety Glasses Lab Coat Connecting wires Crocodile clips

11 Plan adequate to test the problem statement The problem statement states: How does the length of wire affect it’s resistance. To plan for this, I must first do a trial run

12 Trial Run Take a length of wire and connect it to the multimeter using crocodile clips. Then take another length and do the same.

13 Issues I came across Do I start with 1 meter and cut off 10cm each time……yes How do I cut it off…..the pliers wasn’t sharp enough The ends of the wire was kinked…..would this affect my results….yes (I asked the teacher) What settings do I have on the multimeter

14 Procedure and Planning

15 Safety Do not handle multimeter with wet hands As this may give a shock Take care when using pliers to avoid accidental injury Wear safety goggles, as any wire when cut can recoil backwards and injure

16 Procedures Listed in Clear Logical order Gather all apparatus Put on protective clothing Set up apparatus as shown in the diagram Set multimeter to the Ohm setting. Insert one lead into the COM socket and the other into the K ΏmA socket. Ensure the claws are attached to the very end of the wire

17 Procedures Listed in Clear Logical order Ensure that the wire is fully extended without kinks or loops which would affect results Record this length of wire and it’s corresponding resistance. To start with we use 1 meter. Now remove the wire and cut off 10 cm ensuring the ends cut cleanly

18 Procedures Listed in Clear Logical order Record length and corresponding resistance. Repeat at 80 cm, 70 cm, 60 cm…….10 cm Take another 1 meter length and get it’s resistance at the various length

19 Recorded Data Length / cm Resistance1 / Ώ Total Resistance 1 / Ώ 1007.37.47.35 906.66.76.65 805.9 705.35.15.2 604.54.454.475 503.8

20 Labelled Diagram

21 Observations I did a trial run to get a ‘feel’ for the experiment I did the experiment twice to get the average I made sure that the wire was not kinked or looped and that the ends were cut correctly.

22 Observations I noted that the resistance of the wire was proportional to the length

23 Graph Ω Length / cm

24 Calculations / Data Analysis

25 Calculations accurate and clearly shown Data for Table (Resistance 1 + 2) / 2 Eg (7.3 + 7.4) / 2=7.35Ω

26 Relationship between variables discussed I found that the resistance of the wire was directly proportional to the length. With only two exceptions, I found that a decrease in length of 10 cm resulted in a decrease of 0.7Ω in resistance

27 Relationship tested over full range The full range was every 10 cm from 100 cm down to 10 cm This was 10 sets of information, taken twice and the average found.

28 Comments

29 Comments on the suitability of procedure We repeated the test three times to find the average results, but we disregarded the first set of results, as we cut too much off the wire and we found that the ends were cut poorly due to a blunt pliers. If we were to do this experiment again, we would ensure three ‘good’ results

30 Comments on the suitability of procedure If repeating test I would also use thinner wire, to make it easier to cut. I would use sellotape to tie down the wire to make it easier to read.

31 Real Life implication Electrical appliances where you want to give out heat, should have a high resistance, whereas if you want to conduct electricity it should have a low resistance.

32 Relationship between Findings and Problem Statement The longer the wire, the more resistance there is.


Download ppt "Carry out an investigation of the relationship between the length of a metallic conductor (eg Nichrome Wire) and its resistance."

Similar presentations


Ads by Google