Download presentation
Published byCurtis Reynolds Modified over 9 years ago
1
Perturbaciones antropogénicas de la quimiosfera orgánica: Implicaciones a escala global.
Jordi Dachs Departamento de Química Ambiental, Instituto de Investigaciones Químicas y Ambientales de Barcelona Consejo Superior de Investigaciones Científicas (CSIC)
2
Objetivos Perturbaciones antropogénicas de la quimiosfera
¿Es posible cuantificar y caracterizar las perturbaciones químicas por compuestos sintéticos? Transporte y sumideros de contaminantes orgánicos a escala global. Evaluación de riesgo de las familias de compuestos químicos antropogénicos. Cambio climático y la quimiosfera tóxica
3
Anthropogenic perturbations of the chemosphere
Emissions from fossil fuels (CO2, CO, NO, hydrocarbons….). Emissions from combustion processes (Dioxins and Furans, PAHs, …) Sinthetic chemicals used in industry and consumer products. Emission of anthropogenic aerosols. Changes in atmospheric chemistry and composition produced by all the above perturbations.
4
Emissions from Gasoline Combustion
Schauer et al. Environ. Sci. Technol. 40, , 2002.
5
H’=CGas / CWater FAbs=k CGas / H’
Semivolatile Compounds Dominate Air to Water Fluxes of OC H’=CGas / CWater Gas absorption Emissions FAbs=k CGas / H’ (Schauer et al. ES&T 2002) More than 95% of anthropogenic emissions of OC are as gas phase compounds
6
Emissions from Gasoline Combustion
Shauer et al. Environ. Sci. Technol. 40, , 2002.
7
Semi-Volatile Aliphatic Hydrocarbons in Petroleum (Quantified by GC-MS)
UCM Cn = CnH2n+2 CPI = Odd Cn/Even Cn = 1 The UCM has a toxic effect in marine organisms (Rowland et al. ES&T 2001, Donkin et al. 2003…)
8
Aliphatic Hydrocarbons in the NE Atlantic atmosphere
Gas Phase nmol m-3 CPI =1.2 UCM Aerosol Phase nmol m-3 (6% of total AOC) CPI =1.9 UCM
10
The anthropogenic chemosphere
(from non-combustion sources) There are more than 8 millions substances available… There are over substances registered and in use, most of them in low volume production (less than 1 ton/year). The world production of synthetic chemicals is of tons y-1 (1993).
11
The anthropogenic chemosphere
(except from combustion sources) New chemicals are produced every year
12
The anthropogenic chemosphere
(not including combustion sources) About chemicals are commercially available and have a production higher than 1 ton/year. 10000 chemicals have a production higher than 4.5 tons y-1. 4000 chemicals have a production higher than 1000 tons y-1. Muir & Howard. Environ. Sci. Technol. 40, , 2006.
13
The anthropogenic chemosphere, last 30 years
(not including combustion sources) Muir & Howard. Environ. Sci. Technol. 40, , 2006.
14
Risk criteria to identify priority chemicals (PBT chemicals)
Production volume Use profile Physical-chemical characteristics: Persistent Bioaccumulative Toxicity Potential for long range transport.
15
¿Qué contaminantes orgánicos estudiar?
(Hermens, J.L.M. En Toxicology, Niesink R.J.M. (Editor) CRC Press, New York, 1996) log KOW
16
Persistent Organic Pollutants (POPs)
Polychlorinated Dibenzo Dioxins and Furans (PCDD/Fs) Polychlorinated Biphenyls (PCBs) Cln Clm O Cln Clm Cln Clm O Used in capacitors and transformers. Other uses in paints, plasticizers, etc. - Carcinogens. Neurological, reproductive and immune effects. By-product of combustion (plastics..) Carcinogens.
17
Other POPs …. Nonylphenols Polycyclic Aromatics Hydrocarbons (PAH)
Degradation product of alkylphenol polyethoxylates (industrial surfactants). Endocrine disrupter. Polycyclic Aromatics Hydrocarbons (PAH) Produced during the incomplete combustion of organic matter (fossil fuels, vegetation ….). Some are carcinogens.
18
Global Distribution of POPs in the atmosphere
PCBs PBDEs Pozo et al. Environ. Sci. Technol
19
Gas-Particle Partitioning Atmospheric Transport
Environmental fate of organic pollutants CG CW CP CA Air-Water Exchange Water-Particle Partitioning Gas-Particle Partitioning Dry Deposition Wet Deposition Vertical Fluxes Advection Bioaccumulation Continental Inputs Atmospheric Transport Degradation Major Permanent sinks: - Ocean interior (sediments, deep waters) - Atmospheric OH degradation
20
Persistent Organic Pollutants (POPs)
Multimedia Partitioning of POPs air water octanol H=
21
Western Mediterranean Sea
Off-shore Banyuls sur Mer Off-shore Barcelona SW Mediterranean Sampling Locations Western Mediterranean Sea
22
Air-Water Exchange and Dry Aerosol Deposition of Nonylphenols to the Western Mediterranean Sea
23
Atmospheric Occurrence of Nonylphenols Driven by Air-Water Exchange
1/Temp (K -1 ) 0.0033 0.0034 0.0035 0.0036 1 2 Sandy Hook - E NPs Jun Jul Aug Sep Oct Nov Dec Jan 10 20 30 40 Gas Phase Aerosol Phase Concentration (ng m-3) Log CG ( ng m-3) ( Dachs, J., D.A. Van Ry, S.J. Eisenreich. Environ. Sci. Technol., 1999 and )
24
Atmospheric occurrence of Persistent Organic Pollutants (POPs)
PCBs Nonylphenols Log Cg = -9135/T R2 = 0.88
25
Global distillation of semivolatile organic compounds
(Wania, F. and Mackay, D. , Environ. Sci. Technol. 30, 390A-396A, 1996)
26
Selective Sequestration of Atmospheric POPs in Sediments from High Mountain Lakes
Inventories in sediments vs. Temperature (Grimalt et al. Environ. Sci. Technol. 2001)
27
(Lake Redo, Pyrenees Mountains)
Controls on the Sequestration of atmospheric POPs in Sediments from High Mountain Lakes (Lake Redo, Pyrenees Mountains) k’W-Sed/k’W-Air = 0.5 k’W-Sed/k’W-Air = 2.5 Fluxes in mg y-1 (Meijer, S. et al. J. Geophys. Res.. On revision 2007)
28
Evidence for Gas-Phase Driven Phytoplankton accumulation of PCBs
NW Atlantic Ocean Correlated: R2 = 0.90 un-correlated R2 = 0.96 R2 = 0.70 (Yan, et al. Environ. Pollut. 2007)
29
To which extend atmospheric inputs control water concentrations of POPs?
30
Influence of turbulence on water column concentrations and variability (Example: Adriatic Sea)
PCB 28 (Jurado et al. 2007, Mar. Pollut. Bull 54, )
31
Acumulación de contaminantes orgánicos
en la vegetación PCBs PCDDs PCDFs (Böhme et al. Environ. Sci. Technol. 33, , 1999)
32
La vegetación como filtro de contaminantes
(Mclachlan M.S. y M. Horstmann, Environ. Sci. Technol. 32, , 1998) Flujo de deposición en la vegetación Flujo de deposición en el suelo ________________________________ F=
33
Global distribution of PCBs in Soils
Meijer et al. Environ. Sci. Technol
34
Potential Environmental Reservoirs of POPs
Inventory in soil or ocean mixed layer / Inventory in atm boundary layer PCB 101 Soil Conc (pg g-1) PCB usage (tn) (Dalla valle, M., Dachs, J., Sweetman, A.J., Jones, K.C. Global Biogeochem. Cycles 2004. Dalla valle, M., Jurado, E., Dachs, J., Sweetman, A.J., Jones, K.C. Environ. Pollut )
35
Potential Drivers of Oceanic Sink of POPs
36
Cl5DD atmospheric concentration
>> cruise data GAS: Cg [fg m-3] AEROSOL: Cp (Lohmann et al. EST 2001, Jaward et al. EST 2004) Cl5DD atmospheric concentration RRS Bransfield Oct-Dec 1998, Rainer Lohmann PCDD/Fs RV PELAGIA Jan-Feb 2001 Foday Jaward PCBs
37
Climatological and Remote Sensing Data
Mixed Layer Depth Chlorophyll 90N 60N 30N 30S 60S 90S 90N 60N 30N 30S 60S 90S 180W W E E 180W W E E MLD (m) Chlorophyll ( mg m-3) Water-Phytoplankton Fluxes
38
Comparison of Measured and Predicted PCB Sinking Fluxes
North Atlantic Ocean Mediterranean Sea (Gustafsson et al 1997) (Dachs et al 1996) PCB 180 Arabian Sea (Dachs et al 1999) (Dachs et al. Environ Sci. Technol, 2002)
39
Atmospheric Depositional Processes of POPs
AEROSOLS contaminants associated with particles WATER DROPLETS gaseous contaminants VOLATILIZATION Air-water exchange dominates Wet and Dry deposition of POPs except in rainy regions and close to urban areas, and for chemicals that have a strong affinity to aerosols such as PAHs (Mackay 2001, Dachs et al. 1999, Eitzer and Hites 1989) Controversy between dry and wet deposition fluxes of particles; it seems that they are comparable, with the former being more important for species associated with larger particles and where surface waters lie in close proximity to large anthropogenic sources (Zufall et al. 1994). DRY DEPOSITION OF PARTICLES WASHOUT OF PARTICLES WASHOUT OF GASES ABSORPTION OF GASES
40
Comparison of Atmospheric Depositional Processes for PCBs and PCDD/Fs
(Atlantic Ocean) (Jurado et al. Environ. Sci. Technol. 2005)
41
Comparison of Predictions and Measurements of Wet Deposition of POPs
42
Global Sinks for atmospheric PCDD/Fs
(Lohmann R., Jurado E. Dachs J., Lohmann U. Jones K.C 2006. J. Geophys. Res. DOI /2005JD006923)
43
PCB Cycling Over the Open Atlantic Ocean
Occurrence of Gas Phase PCBs (Jaward, F. et al. Evidence for dynamic air-water coupling and cycling of POPs over the Atlantic ocean Environ. Sci. Technol. 2004)
44
POP air-water coupling and cycling in the Open Atlantic Ocean
Diurnal Cycling of Gas Phase PCBs Air-water exchange controls the diurnal cycle Air-water mass transfer coefficient Are Atmospheric Diurnal Cycles of PCBs Driven by the Marine Organic Carbon Cycle?
45
Persistent Organic Pollutants (POPs)
46
Sampling Cruise in the NE Atlantic (Off-shore Sahara, May-June 2003)
47
PAHs Along Two East-West Transects
(NE Atlantic) Phenanthrene Pyrene (Del Vento & Dachs ES&T, 2007)
48
Atmospheric Residence times of PAHs
The observed atmospheric residence times are 3.5 and 3.7 days for gas and aerosol phase PAHs
49
Atmospheric residence time over the ocean
(atm. dep + reaction with OH radical) Air-deep water mass transfer coefficient (kADW) kADW = kAT kSink / (kAT + kSink) kAT= kAW + k’DD+ k’WD Then FAtm-Ocean = kADW CG/H’ Atmospheric Residence Time of POPs τ = inventory/net output = 1 / (rdeg + rADW)
50
Atmospheric Residence times
PCB 180 as example Role of the Biological Pump and Temp. (air-deep water mass transfer coef.) Role of precipitation intensity (Jurado 2006)
51
How pollutants reach the Arctic and Antarctica?
Wania & Mackay 1996
52
How pollutants reach the Arctic and Antarctica?
Atmospheric Concentrations of PCBs (june-july 2005) (Gioia et al. 2008)
53
How pollutants reach the Arctic and Antarctica?
Air-water gradient of PCB fugacity (Gioia et al. 2008)
54
Is the Formation of Deep Oceanic Water a Sink of POPs
55
Formation of Deep Oceanic Water as a Sink of POPs
Lohmann R., Jurado E. Pilson M. , Dachs, J Geophys. Res. Lett. DOI /2006GL
56
Clobal Change and POPs in the Arctic
(MacDonald et al. Sci. Total Environ. 2005)
57
Case Study: POPs in the Arctic
MacDonald and coworkers have published the first comprehensive study on the implications of climate change on POP cycling and impact. This will modify: Atmospheric inputs of POPs/pesticides Atmosphere-ocean gas exchange and delivery of ice-cover content of POPs Riverine inputs Chemical partitioning and degradation of POPs. These changes are also linked to: Altered food web structure Food deprivation or shifts in diet Altered migration pathways and invading species The literature suggests that there is a dynamic link between organochlorine compounds and disease and epidemics in wildlife arctic populations.
58
The anthropogenic chemosphere, last 30 years
(except from combustion sources) Muir & Howard. Environ. Sci. Technol. 40, , 2006.
59
Persistent Organic Pollutants
60
Production and occurrence of Legacy POPs
Lohmann, R., Breivik, K., Dachs, J., Muir, D , Environ. Pollut. In press.
61
Production and Occurrence of Emerging POPs
62
Potential POPs Muir & Howard. Environ. Sci. Technol. 40, , 2006.
63
The anthropogenic chemosphere, last 30 years
(except from combustion sources) Muir & Howard. Environ. Sci. Technol. 40, , 2006.
64
Bioaccumulative and Persistent
Potential POPs Bioaccumulative and Persistent Muir & Howard. Environ. Sci. Technol. 40, , 2006.
65
Potential POPs: Bioaccumulative and Persistent and with long-range transport potential
Muir & Howard. Environ. Sci. Technol. 40, , 2006.
66
POPs in the global environment
The potential for sintetic compounds to become global pollutants is a function of their physical chemical properties and toxicity. Carbon cycle and temperature are important variables controlling global distribution of POPs Atmospheric transport is important for legacy POPs while oceanic transport is important for many emerging POPs. Only the environmental fate and impact of few pollutants is know. Difficult to get the key information from other chemicals. The organic fraction of the chemosphere is largely uncharacterized. Since the different vectors of global change (climatic, biodiversity, hydrologic cycle…) will modify the ecosystem functioning, the fate and impact fo POPs will also be modified under a global change scenario…
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.