Download presentation
Presentation is loading. Please wait.
Published byAlaina Carter Modified over 9 years ago
1
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 1 High Resolution Dynamic Holography with Photorefractive Crystals : Principles and Applications to Vibrations Measurement Marc GEORGES, Centre Spatial de Liège
2
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 2 Holographic Interferometry Full-field, non-contact technique Displacements measurement : 10 nm - 25 microns (one shot) Higher resolution compared to Speckle-based Needs of potential user Easy to set up Quantified data, easy to interprete Transportable/portable, compact, robust, flexible, … Configuration adaptable Cheap, low consumption
3
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 3 Real-time Holographic Interferometry I(x,y)=I 0 (x,y) [1+m(x,y) cos( (x,y))]Interferogram Holographic Interferometry
4
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 4 Critical segment for applicability : Holographic medium –Fast –Homogeneous (optical quality) –Processable in-situ –Erasable, reversible –Low diffusion noise (high signal-noise ratio) –No or fewest operations possible for obtaining information Holographic Interferometry
5
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 5 Photorefractive crystals Local space charge field created between dark and illuminated area 1. Fringe pattern created by interference between 2 waves 2. Charges generated byphoto-excitation in illuminated area, migrate and are trapped in dark area migrate and are trapped in dark area
6
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 6 3. Electro-optic effect (Pockels) Refractive index n is modulated by space-charge field Recording of a volumic refractive index grating (thick hologram) 4. Processus is dynamic and reversible In-situ recording Erasure possible = Re-recording Photorefractive crystals
7
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 7 Crystal families –Sillenites : Bi 12 SiO 20 (BSO), Bi 12 GeO 20 (BGO), Bi 12 TiO 20 (BTO) –Ferroelectrics : LiNbO 3, BaTiO 3, KNbO 3, KTN, SBN,… –Semiconductors : CdTe, ZnTe, AsGa, InP,… Figures of merit n = n sat (1-exp(-t/ )) –Recording energy at saturation : E s = .I –Diffraction efficiency : = I diff /I ref ~ ( n) 2 Photorefractive crystals
8
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 8 Particular properties : depend on crystal cut Photorefractive crystals Anisotropic diffractionIsotropic diffraction Interferogram contrast depends on the analyser orientation Interferogram contrast depends on the product : -coupling constant -crystal thickness
9
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 9 Sillenites : BSO - BGO - BTO Sensitive in blue-green, red with dopants E S ~ 1-10 mJ/cm 2, ~ 0.1 %, ~ 0.5 cm -1 Ferroelectrics : LiNbO 3 - KNbO 3 - BaTiO 3 - SBN... Sensitive blue-green, red-near IR with dopants E S ~ 1-10 J/cm 2, ~ 100 %, ~ 1 - 40 cm -1 Semiconductors : CdTe - ZnTe - CdZnTe.… Sensitive in near IR E S ~ 0.1-1 mJ/cm 2, ~ 1 %, ~ 0.5 cm -1 Photorefractive crystals
10
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 10 Developed by CSL : 1993-1998 Cw Holographic Camera –Optical head : L=25 cm, diam=8 cm 1 kg –Laser : DPSS, VERDI 5W –Laser light brought by optical fiber –Specialty fiber developed (5 m, Transmission 80%, 5W injected) –Mobile rack including laser + power supplylaser + power supply camera, piezo,.. electronic controlscamera, piezo,.. electronic controls
11
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 11 Applications : static measurements –NDT (defect detection) : impacts-delamination in CFRP Interferogram obtained after thermal stimulation (40X55 cm 2 ) Calculated phase image Unwrapped image with vertical differentiation Cw Holographic Camera –NDT (defect detection) : lack of soldering in flat cables (10 x 5 cm 2 )
12
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 12 –Displacement metrology : calibration of piezoelectric sheets (40x25 cm 2 )calibration of piezoelectric sheets (40x25 cm 2 ) sensor-actuators for smart structure controlsensor-actuators for smart structure control High fringe densityHigh fringe density Cw Holographic Camera
13
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 13 Cw Holographic Camera –Displacement metrology : Determination of CTE of carbon fiber rods or assembliesDetermination of CTE of carbon fiber rods or assemblies Observe top of object and baseplateObserve top of object and baseplate After T : Measure difference of displacements betw.After T : Measure difference of displacements betw. –top of object : piston effect –baseplate : piston effect
14
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 14 Applications : Stroboscopic Real-Time –Acousto-optic shutter synchronized with sinusoidal excitation with sinusoidal excitation –Open at maximum object displacement –Displacement btw. average & maximum positions –Duty cycle : 0.15 - 0.2 –Compromise between fringe contrast - image intensity Cw Holographic Camera Frequency scanAcquisition
15
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 15 Applications –Academic demonstration : Metallic plate excited with loudspeaker (M. Georges, Ph. Lemaire, Optics Comm. 98) –Recent tests (by Optrion) : Compressor blades for new aircraft engine Certification predicted resonance frequencies and mode shapesCertification predicted resonance frequencies and mode shapes Several modes found were not predictedSeveral modes found were not predicted Stroboscopic system
16
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 16
17
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 17 Positive –High quality results –Convenient for mode shape visualization –Convenient for comparison with predicted frequencies / mode shapes –Userfriendly device, indefinitely reusable Limits : –Displacements : from 15-20 nm to 30 microns –Stroboscope loss of light (80 % with 0.2 duty cycle)loss of light (80 % with 0.2 duty cycle) small objects (25x25 cm 2 ) with 500 mW lasersmall objects (25x25 cm 2 ) with 500 mW laser
18
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 18 Motivations –Luminous Energy concentrated over a few nanoseconds One can deal with perturbed environmentOne can deal with perturbed environment No more illumination constraints at the readout stepNo more illumination constraints at the readout step (like in the case of stroboscopic readout with cw laser) (like in the case of stroboscopic readout with cw laser) –2 pulses with variable delay High vibration amplitudesHigh vibration amplitudes Fast transient eventsFast transient events Pulsed system
19
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 19 First works –LCFIO (group of G. Roosen-G. Pauliat) Labrunie et al., Opt. Lett. 20 (1995)Labrunie et al., Opt. Lett. 20 (1995) Labrunie et al., PR ’95Labrunie et al., PR ’95 Labrunie et al., Opt. Comm. 140 (1997)Labrunie et al., Opt. Comm. 140 (1997) PR crystal weak sensitivity at 694 nm New crystal BGO:Cu BSO - BGO 488 - 514 - 532 nm (J-C. Launay, ICMCB Bordeaux) –Ruby Laser –Quality of results (vibration mode of turbine blade) was average, tough acceptable Pulsed system
20
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 20 New developments since 1998 (CSL and LCFIO) –Use Q-switch YAG laser (COHERENT Infinity) frequency doubled : 532 nm (adapted to sillenite crystals) pulses : 3 ns energies : 0 to 400 mJ/pulse repetition rate : 0,1 to 30 Hz –Additional equipment for energy balance between pulses –Application in vibration measurement Pulsed system
21
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 21 Pulsed system –Pulse 1 : all energy used for the recording –Pulse 2 : readout decrease E obj to avoid CCD bloomingdecrease E obj to avoid CCD blooming decrease E ref to not erase the hologramdecrease E ref to not erase the hologram –Phase measurement : Cam 1 : I = I 01 (1+m sin )Cam 1 : I = I 01 (1+m sin ) Cam 2 : I = I 02 (1+m cos )Cam 2 : I = I 02 (1+m cos )
22
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 22 Vibrations 4 pulses technique
23
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 23 In practice –Laser :1 pulse 30 Hz max –High frequencies : Use several cycles at a given frequency Results : –Object : Aluminium plate clamped on one edge –Excitation : Loudspeaker Frequency range : 20-380 Hz Interferograms serie example Interferograms serie example 359-365 Hz 359-365 Hz
24
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 24 Amplitude of the frequency response in 2 points
25
Centre Spatial de Liège Université de Liège © Centre Spatial de Liège 2002 25 Conclusion - Future prospects Present : PHIFE « Pulsed Holographic Interferometer for analysis of Fast Events » Development of holographic heads –Improvement of existing ones (new crystal configuration/properties) –different wavelengths Development of double-pulse laser (INNOLAS) –YAG Q-switched –25 Hz, 8 nsec, 800 mJ (1064 nm) –delay : up to 0.1 s Applications in industrial cases (vibrations, transient events, aerodynamics)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.