Presentation is loading. Please wait.

Presentation is loading. Please wait.

СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНО- ВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ Институт теплофизики экстремальных состояний РАН, Москва, Россия Хищенко.

Similar presentations


Presentation on theme: "СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНО- ВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ Институт теплофизики экстремальных состояний РАН, Москва, Россия Хищенко."— Presentation transcript:

1 СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНО- ВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ Институт теплофизики экстремальных состояний РАН, Москва, Россия *konst@ihed.ras.ru Хищенко К. В. *, Левашов П. Р., Ломоносов И. В. Institute for High Energy Densities, Moscow, RAS Работа выполняется при финансовой поддержке РФФИ, гранты № 97-07-90370 № 01-07-90307 № 04-07-90310 VII Международная конференция «SCIENCE ONLINE: электронные информационные ресурсы для науки и образования» Будва, Черногория 13-20 мая 2006

2 EXPERIMENTAL DATA AVAILABLE AT HIGH ENERGY DENSITIES 1.0e+00 1.0e+01 1.0e+03 1.0e+00 1.0e+01 1.0e-04 1.0e-01 1.0e+02 1.0e+05 V, cм 3 /г T, 1000 K P, GPa LIQ.+GAS GAS PLASMA LIQ. MELTING IEX CRYSTALL LM H CP S HPHP H - principal Hugoniot H P - porous Hugoniots S - release isentropes IEX - isobaric expansion

3 Phase distribution 6.6 km/s, impactor 15 mm in diameter, plate thickness - 6.35 mm s s+ls+l l g+lg+l g s+gs+g Pb impactor, Pb target MULTIPHASE METASTABLE EOS 15 Поварницын М. Е., Хищенко К. В., Левашов П. Р. // Экстремальные состояния вещества. Детонация. Ударные волны / Под ред. Михайлова А. Л. Саров: РФЯЦ–ВНИИЭФ, 2005. С. 577–582.

4 http://teos.ficp.ac.ru/rusbank/ http://www.ihed.ras.ru/rusbank/ 6 types of experiments About 21000 registrations for more than 500 substances 4 types of shock-wave data approximations 3 types of caloric EOS Access via the Internet using common browsers Graphical representation of all data EOS calculations (shock Hugoniots, release isentropes, isobars, isochors, cold curves etc.) with graphical representation Modeling of typical shock-wave experiments URL:

5 DATABASE CONTAINS EXPERIMENTAL DATA ON  Shock compression of solid and porous samples  Isentropic expansion  Sound speed measurements behind shock front  Isobaric expansion (exploding wires)  Double shock Hugoniots  Free surface velocity profiles at shock loading  Altshuler L.V. et al. // J. Appl. Mech. Techn. Phys. 1981. V.22. P.145  Kalitkin N.N., Kuz’mina L.V. // Mat. model. 1998. V.10. P.111  Zhernokletov M.V. et al. Experimental data on shock compression and adiabatic expansion of condensed substances at high energy densities, Chernogolovka, 1996  Trunin R.F. et al. Experimental data on shock-wave compression and adiabatic expansion of condensed substances. Sarov: VNIIEF, 2001 SHOCK HUGONIOTS APPROXIMATIONS  Bushman A.V., Lomonosov I.V., Fortov V.E. Equation of state of metals at high energy density. Chernogolovka: 1992  Lomonosov I.V., Fortov V.E., Khishchenko K.V. // Chem. Physics. 1995. V.14. P.47  Khishchenko K.V. Physics of Extreme States of Matter – 2004. Chernogolovka: 2004 EQUATIONS OF STATE

6 SEARCH BY SUBSTANCE

7 EXPERIMENTAL POINTS: TABULAR AND TEXTUAL REPRESENTATION

8 EXPERIMENTAL DATA EDITING (for registered users)

9 SHOCK COMPRESSION OF NICKEL 1-13 – experimental data on shock compression of nickel samples of different initial densities a3 – approximation of shock-wave data a4 – approximation of quantum- statistical calculations e1 – calculation on semi-empirical equation of state

10 ISENTROPIC EXPANSION OF COPPER 1, 2, 3, 6 – experimental data on isentropic expansion of copper samples with different initial densities e1 – calculation on semi-empirical equation of state

11 QUARTZ DOUBLE COMPRESSION FREE SURFACE VELOCITY PROFILE Free surface velocity profile Sample: Mo, 0.416 mm thick Striker: Al, 0.05 mm thick, velocity 4100 км/с 2, 4 – experimental data e1 – equation of state calculation

12 EOS CALCULATIONS: THE LIST OF CURVES

13 TEFLON: EOS CALCULATIONS Different curves calculated using semi- empirical EOS for teflon. Graphical and numerical representation of calculation results Description of calculated curves and experimental points for teflon

14 MODELING OF TYPICAL SHOCK-WAVE EXPERIMENTS «Collision» and «Impedance matching» methods 3 types of experimental set-ups for each methods Riemann problem is solved with given accuracy using shock Hugoniot approximations and EOSs User can choose materials of all substances participating in the experiment, their initial density and EOSs Modeling results can be presented in graphical (in pressure-particle velocity diagram) and textual form The interface allows one to estimate the influence of EOS or shock Hugoniot approximation on the interpretation of experimental data

15 «COLLISION» METHOD Striker: aluminum, KEOS7 EOS, W = 5.6 km/s Target: copper, D = 6.64 km/s А1. Given are W, D, and striker shock Hugoniot. Determine pressure P and particle velocity U in shock- compressed striker and target, as well as density ρ and specific internal energy E of the target. А2. Given are striker velocity W and shock Hugonots or EOSs of striker and target. Determine the shock wave velocity D and parameters P, U, ρ, and E in the target. А3. Given are shock wave velocity in the target D and shock Hugoniots or EOSs of striker and target. Determine the target velocity W and parameters P, U, ρ, and E behind shock wave front in the target. Experiment: Altshuler L.V., Kormer S.B., Bakanova A.A., Trunin R.F. // JETP. 1960. V.38. №3. P.790.

16 «IMPEDANCE MATCHING» METHOD B1. Given are shock wave velocities in the screen D 1 and in the sample D 2, as well as shock Hugoniot or EOS of the screen. Determine parameters P, U, ρ, and E in the shock-compressed sample. B2. Given are shock wave velocity in the screen D 1, and shock Hugoniot or EOSs of screen and sample. Determine shock wave velocity in the sample D 2 and parameters P, U, ρ, and E behind the shock front. B3. Given is the shock wave velocity in the sample D 2. Determine the shock wave velocity in the screen D 1 and parameters P, U, ρ, and E of the sample behind the shock front. Experiment: Altshuler L.V., Krupnikov K.K., Brazhnik M.I. // JETP. 1960. V.34. №4. P.886. Striker: iron, KEOS7 EOS, D 1 = 5.38 km/s Target: copper, D 2 = 5.36 km/s

17 Столкновение кометы с Землей 20 km/s, impactor 1.8 km in diameter

18 Столкновение кометы с Землей Density distribution 20 km/s, impactor 1.8 km in diameter 3.0 10 -2 2.25 1.50 0.75

19 CONCLUSIONS AND FUTURE WORK Public database on shock-wave experiments and equations of state has been creating: - 6 types of experimental data, more than 20000 points - graphical representation of all data - 3 types of wide-range equations of state - EOS calculation with graphical representation - modeling of typical shock-wave experiments We plan to incorporate multiphase tabular equations of state for metals into the database


Download ppt "СИСТЕМА ДЛЯ РАСЧЕТОВ УДАРНО- ВОЛНОВЫХ ПРОЦЕССОВ ЧЕРЕЗ ИНТЕРНЕТ Институт теплофизики экстремальных состояний РАН, Москва, Россия Хищенко."

Similar presentations


Ads by Google