Download presentation
Presentation is loading. Please wait.
Published byJasmine Willis Modified over 9 years ago
1
Chapter 4 Molecular Geometry and Bonding Theories ExamplesDr.Harbi
2
Valence Shell Electron Pair Repulsion (VSEPR) Theory based on idea that regions of electron density in valence shell of central atom will be distributed in space such that electrostatic repulsions are minimizedbased on idea that regions of electron density in valence shell of central atom will be distributed in space such that electrostatic repulsions are minimized places regions of electron density as far apart as possibleplaces regions of electron density as far apart as possible produces molecular geometryproduces molecular geometry
3
Steps in Predicting Molecular Geometry draw Lewis structure of substancedraw Lewis structure of substance count regions of electron density on central atomcount regions of electron density on central atom draw electron pair shapedraw electron pair shape derive and draw molecular geometryderive and draw molecular geometry
4
Regions of Electron Density single covalent bondsingle covalent bond double covalent bonddouble covalent bond triple covalent bondtriple covalent bond lone pairlone pair unpaired electronunpaired electron
5
# Regions Shape 2linear 180°
6
Shape 2 3 linear trigonal planar 180° 120°
7
# Regions Shape 2 3 linear trigonal planar 4tetrahedral 180° 120° 109.5°
8
5 trigonal bypyramidal 90° 120°
9
5 6 octahedral 90° 90° 120°
10
Central Atoms Having Less than an Octet Relatively rare.Relatively rare. Molecules with less than an octet are typical for compounds of Groups 1A, 2A, and 3A.Molecules with less than an octet are typical for compounds of Groups 1A, 2A, and 3A. Most typical example is BF 3.Most typical example is BF 3. Formal charges indicate that the Lewis structure with an incomplete octet is more important than the ones with double bonds.Formal charges indicate that the Lewis structure with an incomplete octet is more important than the ones with double bonds. Exceptions to the Octet Rule
12
Summary of VSEPR Molecular Shapes e-pairsNotationName of VSEPR shapeExamples 2AX 2 LinearHgCl 2, ZnI 2, CS 2, CO 2 3AX 3 Trigonal planarBF 3, GaI 3 AX 2 ENon-linear (Bent)SO 2, SnCl 2 4AX 4 TetrahedralCCl 4, CH 4, BF 4 - AX 3 E(Trigonal) PyramidalNH 3, OH 3 - AX 2 E 2 Non-Linear (Bent)H 2 O, SeCl 2 5AX 5 Trigonal bipyramidalPCl 5, PF 5 AX 4 EDistorted tetrahedral (see-sawed) TeCl 4, SF 4 AX 3 E 2 T-ShapedClF 3, BrF 3 AX 2 E 3 LinearI 3 -, ICl 2 - 6AX 6 OctahedralSF 6, PF 6 - AX 5 ESquare PyramidalIF 5, BrF 5 AX 4 E 2 Square PlanarICl 4 -, BrF 4 -
13
Examples Determine the electron-pair (Domain) and molecular geometries of each of the following. Draw and name each.
14
Beryllium Chloride
15
BeCl 2
16
Beryllium Chloride BeCl 2 1. Lewis structure
17
Beryllium Chloride BeCl 2 1. Lewis structure Cl Be Cl
18
Beryllium Chloride BeCl 2 1. Lewis structure Cl Be Cl 2. Count regions of electron density on central atom central atom
19
Beryllium Chloride BeCl 2 1. Lewis structure Cl Be Cl 2. Count regions of electron density on central atom central atom 2
20
Beryllium Chloride BeCl 2 1. Lewis structure Cl Be Cl 2. Count regions of electron density on central atom central atom 2 3. Draw and name electron-pair shape Cl Be Cl linear
21
Beryllium Chloride BeCl 2 3. Draw and name electron-pair shape Cl Be Cl linear 3. Derive and name molecular shape Cl Be Cl linear
22
Carbon Dioxide
23
CO 2
24
Carbon Dioxide CO 2 O C O
25
Carbon Dioxide CO 2 O C O 2 regions
26
Carbon Dioxide CO 2 O C O 2 regions Electron-pair shape, linear O C O
27
Carbon Dioxide CO 2 O C O 2 regions Electron-pair shape, linear O C O Molecular shape, linear O C O
28
Aluminum Bromide
29
AlBr 3
30
Aluminum Bromide AlBr 3 Al Br Br Br
31
Aluminum Bromide AlBr 3 Al Br Br Br 3 regions
32
Aluminum Bromide AlBr 3 Al Br Br Br 3 regions Electron-pair shape trigonal planar Al Br Br Br
33
Aluminum Bromide AlBr 3 Al Br Br Br 3 regions Electron-pair shape trigonal planar Al Br Br Br Molecular shape trigonal planar Al Br Br Br
34
Nitrite Ion
35
NO 2 –
36
Nitrite Ion NO 2 – ONO –
37
Nitrite Ion NO 2 – ONO – 3 regions
38
Nitrite Ion NO 2 – ONO – 3 regions Electron-pair shape trigonal planar N O O –
39
Nitrite Ion NO 2 – ONO – 3 regions Electron-pair shape trigonal planar N O O –
40
Nitrite Ion NO 2 – ONO – 3 regions Electron-pair shape trigonal planar N O O – Molecular shape bent bent N O O –
41
Carbon Tetrabromide
42
CBr 4
43
Carbon Tetrabromide CBr 4 C Br Br Br Br
44
Carbon Tetrabromide CBr 4 C Br Br Br Br 4 regions
45
Carbon Tetrabromide CBr 4 C Br Br Br Br 4 regions Electron-pair shape tetrahedral C Br Br Br Br
46
Carbon Tetrabromide CBr 4 C Br Br Br Br 4 regions Electron-pair shape tetrahedral C Br Br Br Br Molecular shape tetrahedral
47
Arsine
48
Arsine AsH 3
49
Arsine As H H H
50
Arsine As H H H 4 regions electron-pair shape, tetrahedral
51
Arsine AsH 3 As H H H 4 regions electron-pair shape, tetrahedral As H H H
52
Arsine AsH 3 As H H H 4 regions electron-pair shape, tetrahedral As H H H molecular shape trigonal pyramid or tripod
53
Arsine AsH 3 As H H H 4 regions electron-pair shape, tetrahedral As H H H molecular shape trigonal pyramid or tripod As H H H
54
Water H2OH2OH2OH2O
55
Water H2OH2OH2OH2O O HH
56
Water H2OH2OH2OH2O O HH 4 regions electron-pair shape tetrahedral
57
Water H2OH2OH2OH2O O HH 4 regions electron-pair shape tetrahedral O HH
58
Water H2OH2OH2OH2O O HH 4 regions electron-pair shape tetrahedral O HH molecular shape bent
59
Water H2OH2OH2OH2O O HH 4 regions electron-pair shape tetrahedral O HH molecular shape bent O HH
60
Phosphorus Pentafluoride
61
PF 5 P F F F F F
62
Phosphorus Pentafluoride PF 5 P F F F F F 5 regions electron-pair shape trigonal bipyramidal F F F F F P
63
Phosphorus Pentafluoride PF 5 P F F F F F 5 regions electron-pair shape trigonal bipyramidal F F F F F P molecular shape trigonal bipyramidal
64
Sulfur Tetrafluoride
65
SF 4
66
Sulfur Tetrafluoride SF 4 S F F F F
67
Sulfur Tetrafluoride SF 4 S F F F F 5 regions trigonal bipyramidal
68
Sulfur Tetrafluoride SF 4 S F F F F 5 regions trigonal bipyramidal F F F F S
69
Sulfur Tetrafluoride SF 4 S F F F F 5 regions trigonal bipyramidal F F F F S F F F F S molecular shape distorted tetrahedral
70
Sulfur Tetrafluoride SF 4 S F F F F 5 regions trigonal bipyramidal F F F F S molecular shape see saw S F F F F
71
Chlorine Trifluoride
72
ClF 3
73
Chlorine Trifluoride ClF 3 F F F Cl
74
Chlorine Trifluoride ClF 3 F F F Cl 5 regions electron-pair shape trigonal bipyramidal
75
Chlorine Trifluoride ClF 3 F F F Cl 5 regions electron-pair shape trigonal bipyramidal Cl F F F
76
Chlorine Trifluoride ClF 3 F F F Cl 5 regions electron-pair shape trigonal bipyramidal Cl F F F
77
Chlorine Trifluoride ClF 3 F F F Cl 5 regions electron-pair shape trigonal bipyramidal Cl F F F molecular shape T-shape Cl F F F
78
Sulfur Hexafluoride
79
SF 6
80
Sulfur Hexafluoride SF 6 S F F F F F F
81
Sulfur Hexafluoride SF 6 S F F F F F F 6 regions electron-pair shape octahedral S F F F F F F
82
Sulfur Hexafluoride SF 6 S F F F F F F 6 regions electron-pair shape octahedral S F F F F F F molecular shape octahedral
83
Bromine Pentafluoride
84
BrF 5
85
Bromine Pentafluoride BrF 5 Br F F F F F
86
Bromine Pentafluoride BrF 5 Br F F F F F 6 regions electron-pair shape octahedral
87
Bromine Pentafluoride BrF 5 Br F F F F F 6 regions electron-pair shape octahedral Br F F F F F
88
Bromine Pentafluoride BrF 5 Br F F F F F 6 regions electron-pair shape octahedral Br F F F F F
89
Bromine Pentafluoride BrF 5 Br F F F F F 6 regions electron-pair shape octahedral Br F F F F F molecular shape square pyramidal Br F F F F F
90
Xenon Tetrafluoride
91
XeF 4
92
Xenon Tetrafluoride XeF 4 Xe F F F F
93
Xenon Tetrafluoride XeF 4 Xe F F F F 6 regions electron-pair shape octahedral
94
Xenon Tetrafluoride XeF 4 Xe F F F F 6 regions electron-pair shape octahedral Xe F F F F
95
Xenon Tetrafluoride XeF 4 Xe F F F F 6 regions electron-pair shape octahedral Xe F F F F
96
Xenon Tetrafluoride XeF 4 Xe F F F F 6 regions electron-pair shape octahedral Xe F F F F Xe F F F F molecular shape square planar
97
Tribromide Ion Br 3 – Br 3 –
98
Tribromide Ion Br 3 – Br 3 – Br Br Br
99
Tribromide Ion Br 3 – Br 3 – Br Br Br 5 regions electron-pair shape trigonal bipyramidal
100
Tribromide Ion Br 3 – Br 3 – Br Br Br 5 regions electron-pair shape trigonal bipyramidal Br Br Br
101
Tribromide Ion Br 3 – Br 3 – Br Br Br 5 regions electron-pair shape trigonal bipyramidal Br Br Br
102
Tribromide Ion Br 3 – Br 3 – Br Br Br 5 regions electron-pair shape trigonal bipyramidal Br Br Br molecular shape linear Br Br Br
103
Polarity of Molecules molecules in which dipole moments of the bonds do not cancel are polar moleculesmolecules in which dipole moments of the bonds do not cancel are polar molecules molecules that do not contain polar bonds or in which all dipole moments cancel are non-polar moleculesmolecules that do not contain polar bonds or in which all dipole moments cancel are non-polar molecules
104
CO 2 vs H 2 O C O O O H H
105
C O O O H H + – + –
106
CO 2 vs H 2 O C O O O H H + – + –
107
CO 2 vs H 2 O C O O O H H + – + – 0
108
CO 2 vs H 2 O C O O O H H + – + – 0
109
CO 2 vs H 2 O C O O O H H + – + – 0yx yx
110
CO 2 vs H 2 O C O O O H H + – + – yx y x
111
CO 2 vs H 2 O C O O O H H + – + – nonpolar polar
112
Study and Know 9.2 Polarity of Molecules
113
VSEPR Theory only explains molecular shapes says nothing about bonding in molecules Enter Valence Bond (VB) Theory atoms share electron pairs by allowing their atomic orbitals to overlap
114
+ H H
115
+ H H bond
116
+ H H 1s E H
117
+ H H 1s E H H
118
+ F F F2F2F2F2
119
+ F F F2F2F2F2
120
1s 2s 2p E F
121
1s 2s 2p F E F
122
Methane CH 4 1s 2s 2p E C
123
Methane 1s 2s 2p E C H H
124
Methane 1s 2s 2p E C H H H+H+H+H+
125
Methane 1s 2s 2p E C H H H+H+H+H+ H–H–H–H–
126
Methane 1s 2s 2p E C H H H+H+H+H+ H–H–H–H– C H H H H 90° 90°
127
Methane C H H H H 109.5° Tetrahedral Geometry 4 Identical Bonds 4 Identical Bonds
128
Problem and Solution C must have 4 identical orbitals in valence shell for bonding solution: hybridization
129
Methane CH 4 1s 2s 2p E
130
Methane 1s 2s 2p E 1s 2s 2p E
131
Methane 1s 2s 2p E 1s 2s 2p E
132
Methane 1s 2s 2p E 1s 2s 2p E
133
Methane 1s 2s 2p E 1s E sp 3
134
– + + + 2p 2s
135
– + + + = 2p 2s an sp 3 hybrid orbital
136
4 identical sp 3 hybrid orbitals
137
tetrahedral geometry
138
4 identical sp 3 hybrid orbitals tetrahedral geometry
139
4 identical sp 3 hybrid orbitals tetrahedral geometry
140
Methane CH 4 1s 2s 2p E 1s E sp 3 H H H H
141
Hybridization vs Shape (e – pair) sp linearsp linear sp 2 trigonal planarsp 2 trigonal planar sp 3 tetrahedralsp 3 tetrahedral sp 3 d trigonal bipyramidalsp 3 d trigonal bipyramidal sp 3 d 2 octahedralsp 3 d 2 octahedral
142
Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion
143
Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion Br 3 –
144
Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion Br 3 – Br Br Br 5 regions electron-pair shape trigonal bypyramidal
145
Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion Br 3 – Br Br Br 5 regions electron-pair shape trigonal bypyramidal sp 3 d
146
Predict the Hybridization of the Central Atom in carbon dioxide in carbon dioxide CO 2
147
Predict the Hybridization of the Central Atom in carbon dioxide in carbon dioxide CO 2 O C O 2 regions Electron-pair shape, linear
148
Predict the Hybridization of the Central Atom in carbon dioxide in carbon dioxide CO 2 O C O 2 regions Electron-pair shape, linear sp
149
Predict the Hybridization of the Central Atom in aluminum bromide in aluminum bromide
150
Predict the Hybridization of the Central Atom in aluminum bromide in aluminum bromide Al Br Br Br 3 regions Electron-pair shape trigonal planar
151
Predict the Hybridization of the Central Atom in aluminum bromide in aluminum bromide Al Br Br Br 3 regions Electron-pair shape trigonal planar sp 2
152
Predict the Hybridization of the Central Atom in xenon tetrafluoride in xenon tetrafluoride
153
Predict the Hybridization of the Central Atom in xenon tetrafluoride in xenon tetrafluoride Xe F F F F 6 regions electron-pair shape octahedral
154
Predict the Hybridization of the Central Atom in xenon tetrafluoride in xenon tetrafluoride Xe F F F F 6 regions electron-pair shape octahedral sp 3 d 2
155
Consider Ethylene, C 2 H 4
156
C C H H H H
157
C C H H H H 3 regions trigonal planar
158
Consider Ethylene, C 2 H 4 C C H H H H 3 regions trigonal planar sp 2
159
Consider Ethylene, C 2 H 4 C C H H H H 3 regions trigonal planar sp 2
160
1s 2s 2p E
161
1s 2s 2p E 1s 2s 2p E
162
1s 2s 2p E 1s 2p E
163
2p
164
2p
167
bond framework
170
bond
172
Consider Acetylene, C 2 H 2 C C H H
173
C C H H 2 regions linear
174
Consider Acetylene, C 2 H 2 C C H H 2 regions linear sp
175
Consider Acetylene, C 2 H 2 C C H H 2 regions linear sp
176
1s 2s 2p E 1s 2s 2p E
177
1s 2s 2p E 1s sp 2p E
178
sp sp 2p 2p
180
bond framework
182
bonds
184
Generally single bond is a bondsingle bond is a bond double bond consists of 1 and 1 bonddouble bond consists of 1 and 1 bond triple bond consists of 1 and 2 bondstriple bond consists of 1 and 2 bonds
185
Molecular Orbital (MO) Theory when atoms combine to form molecules, atomic orbitals overlap and are then combined to form molecular orbitals orbitals are conserved a molecular orbital is an orbital associated with more than 1 nucleus like any other orbital, an MO can hold 2 electrons consider hydrogen atoms bonding to form H 2
186
+ H H
187
add subtract
188
add subtract bonding antibonding
189
add subtract bonding antibonding * 1s 1s
190
1s 1s * 1s H H H2H2H2H2 E E
191
1s 1s 1s * 1s H H H2H2H2H2 E E
192
1s 1s 1s * 1s H H H2H2H2H2 E E
193
1s 1s 1s * 1s H H H2H2H2H2 E E
194
1s 1s 1s * 1s H H H2H2H2H2 E E ( 1s ) 2
195
1s 1s 1s * 1s H H H2H2H2H2 E E ( 1s ) 2 total spin = 0
196
Diamagnetic: slightly repelled by a magnetic fieldDiamagnetic: slightly repelled by a magnetic field total spin = 0 paramagnetic: attracted to a magnetic fielsparamagnetic: attracted to a magnetic fiels total spin not 0 Bond Order = 1/2 (bonding e – – antibonding e – )Bond Order = 1/2 (bonding e – – antibonding e – )
197
1s 1s 1s * 1s H H H2H2H2H2 E E ( 1s ) 2 total spin = 0 diamagnetic
198
1s 1s 1s * 1s H H H2H2H2H2 E E BO = 1/2 ( 2 – 0) = 1
199
Consider He 2
200
1s 1s 1s * 1s He He He 2 E E
201
1s 1s 1s * 1s He He He 2 E E
202
1s 1s 1s * 1s He He He 2 E E ( 1s ) 2 ( * 1s ) 2
203
1s 1s 1s * 1s He He He 2 E E diamagnetic
204
1s 1s 1s * 1s He He He 2 E E BO = 1/2 ( 2 – 2 ) = 0
205
Combination of p Atomic Orbitals
206
2p 2p
207
subtract add
208
bonding MO antibonding MO subtract add
209
bonding MO antibonding MO * 2p 2p subtract add
210
2p 2p
211
subtract add
212
antibonding MO bonding MO subtract add
213
2p * 2p subtract add
214
2p * 2p subtract add
215
Consider Li 2
216
2s 2s 2s * 2s Li Li Li 2 E E 2p 2p * 2p 2p 2p * 2p
217
2s 2s 2s * 2s Li Li Li 2 E E 2p 2p * 2p 2p 2p * 2p
218
2s 2s 2s * 2s Be Be Be 2 E E 2p 2p * 2p 2p 2p * 2p
219
2s 2s 2s * 2s Be Be Be 2 E E 2p 2p * 2p 2p 2p * 2p
220
2s 2s 2s * 2s B B B2B2B2B2 E E 2p 2p * 2p 2p 2p * 2p
221
2s 2s 2s * 2s B B B2B2B2B2 E E 2p 2p * 2p 2p 2p * 2p
222
2s 2s 2s * 2s C C C2C2C2C2 E E 2p 2p * 2p 2p 2p * 2p
223
2s 2s 2s * 2s N N N2N2N2N2 E E 2p 2p * 2p 2p 2p * 2p
224
2s 2s 2s * 2s O O O2O2O2O2 E E 2p 2p * 2p 2p 2p * 2p
225
2s 2s 2s * 2s F F F2F2F2F2 E E 2p 2p * 2p 2p 2p * 2p
226
2s 2s 2s * 2s Ne Ne Ne 2 E E 2p 2p * 2p 2p 2p * 2p
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.