Download presentation
1
Plant Breeding Systems Promoting Outcrossing
Genetics of Plant Breeding Systems Promoting Outcrossing
2
Angiosperm breeding systems
Plants have creative ways to reproduce successfully—extremes from obligate selfing to obligate outcrossing
3
Breeding systems enforcing outcrossing
evolutionarily advantageous (in theory) to prevent pollination between closely related individuals major mechanisms enforcing outcrossing (cross-pollination) self-incompatibility—negative chemical interaction between pollen and style tissue with same alleles heterostyly—mechanical prevention of pollen deposition by relative placement of anthers to style dioecy—separation of anthers and pistils on separate plants
4
Self-incompatibility systems in angiosperms
evolutionarily advantageous to enforce “outcrossing”—pollination among unrelated individuals self-incompatibility (SI) mechanism one way to accomplish this, by blocking selfing or sib mating self-incompatibility (SI) well studied in some plants, based on protein-protein interactions between pollen and style involving S-locus genes
5
Self-incompatibility systems in angiosperms
S-locus genes have many different alleles in a given population interaction of proteins on pollen and style with same alleleSI response (no pollen tube growth) interaction between pollen and style with different allelesno SI response (successful fertilization)
6
Self-incompatibility systems in angiosperms
different plant families have evolved one or the other of 2 mechanisms (plus a smattering of others) but many plants are self-compatible (estimated 50% of angiosperms) 2 major SI mechanisms: gametophytic SI—pollen phenotype is determined by its gametophytic haploid genotype sporophytic SI—pollen phenotype is determined by diploid genotype of the anther
7
Sporophytic SI mechanism
in sporophytic SI, S-locus is cluster of three tightly-linked loci: SLG (S-Locus Glycoprotein)—encodes part of receptor present in the cell wall of the stigma SRK (S-Receptor Kinase)—encodes other part of the receptor SCR (S-locus Cysteine-Rich protein)—encodes soluble ligand for same receptor
8
Sporophytic SI mechanism
in sporophytic SI, S-locus is cluster of three tightly-linked loci: SLG (S-Locus Glycoprotein)—encodes part of receptor present in the cell wall of the stigma SRK (S-Receptor Kinase)—encodes other part of the receptor. SCR (S-locus Cysteine-Rich protein)—encodes soluble ligand for same receptor only pollen grains from heterozygote for S-alleles will germinate
9
Gametophytic SI mechanism
more common than sporophytic SI but less well understood SI controlled by single S allele in the haploid pollen grain only pollen grains not containing same allele as style tissue will germinate S1 S2 S1 S2 S1 S2 S1S2 pistil S1S3 pistil S3S4 pistil
10
Evolution of self-incompatibility: S-locus in Maloideae
Raspé and Kohn (2007) genotyped stylar-incompatibility RNase in 20 pops of European mountain ash (Sorbus aucuparia) found up to 20 different alleles in some pops recovered total of 80 S-alleles across populations--huge diversity
11
Self-compatibility in Arabidopsis thaliana
Broyles et al. (2007) discovered that loss of self-incompatibility (ancestral condition) in Arabidopsis is associated with inactivation of genes required for S1—SRK and SCR divergent organization and sequence of haplotypesextensive remodeling, reversal of self-incompatibility
12
S-allele diversity and real-life populations: the pale coneflower
13
S-allele diversity and real-life populations: purple coneflower
Wagenius et al. (2007) examined seed set in self-incompatible purple coneflower in various-sized prairie fragments pollination and new seeds increased with pop density—”Allee effect” based on increased diversity of S-alleles simulation modeling: small pop sizeslowered seed set due to loss of S-alleles through drift
14
Heterostyly as another outcrossing mechanism
described in detail first by Darwin, in purple loosestrife (Lythrum salicaria) different individuals have floral forms differing in relative positions of stigma and anthers (distyly—2 forms, tristyly—3 forms) pollination effective only between different floral forms on different individuals
15
Heterostyly as another outcrossing mechanism
both heterostyly and any associated incompatibility reactions controlled by "supergenes“ in distyly, thrum plants are heterozygous (GPA/gpa) while pin plants are homozygous (gpa/gpa): female characters controlled by G supergene—G = short style, g = long style male characters controlled by P supergene—P = large pollen & thrum male incompatibility, p = small pollen & pin male incompatibility anther position controlled by A supergene—A = high anthers (thrum), a = low anthers (pin)
16
Heterostyly and polyploidy in primroses
Guggisberg et al. (2006) analysed phylogenetic relationships of a primrose group using 5 chloroplast spacer genes interpreted 4 switches from heterostyly to homostyly and 5 polyploid events all homostyly switches correspond to polyploidy red depicts homostylous species
17
Heterostyly and polyploidy in primroses
all homostyly switches correlate precisely with polyploid events polyploids inhabit more northerly regions left vacant by retreating glaciers in last 10,000 years outcrossing in those regions may not have been as important for reproductive success as selfing, according to surmise of authors additional idea—does polyploidy modify genetics of heterostyly?
18
Dioecy as a third outcrossing mechanism
dioecy—individuals possessing either stamens or carpels (separation of sexes on different plants) frequent in temperate trees, annual weeds, few forest herbs, especially common in oceanic island archipelagos totals ca. 4% of angiosperms
19
Dioecy as a third outcrossing mechanism
frequent in temperate trees and annual weeds, especially common in oceanic island archipelagos another successful strategy for ensuring cross-pollination among unrelated plants
20
Typical developmental basis of dioecy
buds originate as normal bisexual flowers, with anther and pistil meristems at some point in early flower development, further elaboration is halted in one or other reproductive structure flower becomes functionally staminate or pistillate (many species retain vestigial parts, showing basis of unisexual flowers)
21
Dioecy and monoecy interconvertible
Zhang et al. (2006) examined Cucurbitales order (including begonias, gourds) using 9 chloroplast genes found repeated switches between bisexuality, monoecy and dioecy—very labile
22
Molecular basis of dioecy in Thalictrum
carpellate di Stilio (2006) studied molecular correlates of development in meadow rue (Thalictrum), a wind-pollinated dioecious forest herb found that earliest flower buds were already either carpellate or staminate—suggested homeotic gene regulation staminate bisexual relative
23
Floral homeotic (ABC) genes
well known model describes floral organ identity by major classes of genes various homologs of each class have been identified in different plants studied, including: apetala3 (AP3), B class pistillata (PI), B class agamous (AG), C class B A C sepals petals stamens carpels
24
Floral homeotic (ABC) genes
in other groups, mutations in B class genes in other plants produce carpellate flowers overexpression of B class genes produces staminate flowers hypothesis of di Stilio et al.: sexual dimorphism of dioecy based on differential regulation of B and C genes B A C sepals petals stamens carpels
25
Returning now to our Thalictrum program...
investigators recovered several AP3 homologs (left tree) and 2 PI homologs (right tree) 3 AG homologs also found AP3 homolog sequences are truncated with a premature stop codonno effective protein produced
26
Returning now to our Thalictrum program...
RT-PCR with locus-specific primers in dioecious species used showed expected gene expression pattern: staminate flowers have B class AP3 and PI homologs and AG1 homolog expressed carpellate flowers have only AG2 (carpel-specific) homolog expressed
27
Summary plant breeding systems span range from obligately selfing to obligately outcrossing various strategies have evolved to promote outcrossing; major ones are: self-incompatibility—chemical control of pollen germination on style heterostyly—mechanical prevention of pollen deposition by relative displacement of anthers and stigma
28
each breeding system has different molecular genetic regulation
Summary dioecy—separation of sexes on different plants each breeding system has different molecular genetic regulation breeding systems can flip-flop back and forth, even within lineages—evolutionarily labile
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.