Download presentation
Published byJeffry McLaughlin Modified over 9 years ago
1
Today’s class Boundary Value Problems Eigenvalue Problems
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
2
Boundary Value Problems
Auxiliary conditions n-th order equation requires n conditions Initial value conditions All n conditions are specified at the same value of the independent variable Boundary value conditions The n conditions are specified at different values of the independent variable Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
3
Initial value conditions
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
4
Boundary value conditions
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
5
Types of Boundary Conditions
Simple B.C.: The value of the unknown function is given at the boundary. Neumann B.C.: The derivative of the unknown function is given at the boundary. Mixing B.C.: The combination of the unknown function’s value and derivative is given at the boundary. Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
6
Boundary Value Problems
Shooting Method Convert the boundary value problem into an equivalent initial value problem by choosing values for all dependent variables at one boundary Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
7
Shooting Method Example
Convert to first-order Guess a value for z(0) Use RK method or any other method to solve the ODE at y=10 Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
8
Shooting Method Example
Using RK method with an initial guess of z(0)=10 we get y(10)= The specified condition was y(10)=200, so try again Using RK method with an initial guess of z(0)=20 we get y(10)= With two guesses and a linear ODE, we can interpolate to find the correct value Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
9
Shooting Method Example
z(0)=10 z(0)=20 z(0)=12.69 Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
10
Shooting Method If the ODE is non-linear, then you have to recast the problem as solving a series of root problems Think of the guessed values as a vector V That vector V will generate a y(yL) vector after solving the ODE The y(yL) vector should equal the boundary value conditions at yL Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
11
Shooting Method Since y is a function of V, you can create a new discrepancy function F that is dependent on V The problem then becomes to zero the discrepancy We don’t know F so we cannot use normal root-solving methods But we can approach it by iteratively looking at the finite difference derivatives Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
12
Finite-Difference Method (FDM)
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
13
Finite-Difference Method (FDM)
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
14
Finite-Difference Method (FDM)
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
15
Matrix Form of Equation System
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
16
FDM Example Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
17
Eigenvalue Problems Eigenvalue problems are a special class of boundary-value problem Common in engineering systems with oscillating behavior Springs Vibrations Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
18
Physics of Eigenvalues & Eigenvectors
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
19
Physics of Eigenvalues
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
20
Physics of Eigenvalues
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
21
Steps of Solving Eigen-value Problems
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
22
Eigenvalue Example Numerical Methods Prof. Jinbo Bi Lecture 18
CSE, UConn
23
Eigenvalue Example Numerical Methods Prof. Jinbo Bi Lecture 18
CSE, UConn
24
Boundary value eigenvalue problems
Polynomial Method Power Method Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
25
Power Method The Power Method is an iterative procedure for determining the dominant (largest) eigenvalue of the matrix A and the corresponding eigenvector. Example Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
26
Example of Power Method (Cont.)
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
27
Example of Power Method (Cont.)
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
28
Example of Power Method (Cont.)
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
29
Example of Power Method (Cont.)
Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
30
Inverse Power Method The Power Method can be modified to provide the smallest (lowest) (magnitude) eigenvalue and its eigenvector. The modified method is known as the inverse power method The smallest eigenvalue λ in the matrix A corresponds to 1/ λ the largest eigenvalue in the inverse matrix A-1. Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
31
General I-P Method The combination of Power Method and I-P method can be use to determine all the eigenvalues and their related eigenvectors. Deflation Hotelling’s Method for symmetric matrices First, normalize the largest eigenvector found by the sum of the squares of the elements in the eigenvector Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
32
General I-P Method Then create new A2 matrix
The new A2 matrix has the same eigenvalues as A1 except that the largest eigenvalue has been replaced with 0 Numerical Methods Lecture 18 Prof. Jinbo Bi CSE, UConn
33
Hotelling’s Method Numerical Methods Prof. Jinbo Bi Lecture 18
CSE, UConn
34
Hotelling’s Method Numerical Methods Prof. Jinbo Bi Lecture 18
CSE, UConn
35
Next class Curve Fitting Numerical Methods Prof. Jinbo Bi Lecture 18
CSE, UConn
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.