Download presentation
1
Piecewise Functions
2
Piecewise function Objectives: Evaluate piecewise functions
Graph Piecewise Functions Graph Step Functions Vocabulary: Piecewise Functions, Step Functions
3
Piecewise function Up to now, weβve been looking at functions represented by a single equation. In real life, however, functions may be represented by a combination of equations, each corresponding to a part of the domain. These are called piecewise functions.
4
Piecewise function All piecewise functions start with:
5
Piecewise function Since this one is in three parts, it will have three lines within f(x)
6
Piecewise function This graph already tells us, the equation for each branch. The part we need to focus on is x = 2, where the graph splits.
7
Evaluate f(x) when x=0, x=2, x=4
First you have to figure out which equation to use. You NEVER use both! Then evaluate using that equation. Now graph your equation.
8
Step Functions Step Function: Type of Piecewise function. The output remains constant with in each branch and changes in value from one interval to the next.
9
Step Functions
10
Graph :
11
Graph: 1. Make a table for several values of each function
2. Graph those values 3. Remember your endpoints! Open or closed?
12
Graph:
13
Workbook page 12 #1-14 Pg. 13 shows how to put piecewise functions into your graphing calculator (TI-83 and TI-84)
14
Example with different boundary points
Make a table with a few points for each function. ALWAYS plug in the boundary point(s) into BOTH functions (show on your table) If the y-value for the boundary point(s) is the same in both functions, then just plot the point and keep going If the y-value for the boundary point(s) is different in each function, then you plot both points- one should be open circled, one should be close circled
15
Example where the boundary points are the same
1.) π= π₯β π₯β€1 π₯ 2 β2π₯ π₯>1 2.) π= π₯ π₯β€0 3 π₯ 2 βπ₯ π₯>0
16
Graph : step function It costs $1.40 for the first minute of a phone call to Paris, France, and $0.80 for each additional minute or fraction thereof. Draw a graph of a step function that models this cost. MAKE A TABLE FIRST!
17
Practice Sess 20 minutes Workbook page 14-15
18
Bellringer: Write the piecewise function for each picture
19
Write An Equation for the Given Graph
Look for at least 2 points on each part of the graph For linear functions, find the slope of the line using those 2 points Put into point-slope form Keep in mind that horizontal lines are f(x)= # WHER ARE YOUR BOUNDARIES AT??
20
Write An Equation for the Given Graph
(-3,0) (2,2)
21
Homework! Workbook pg all
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.