Presentation is loading. Please wait.

Presentation is loading. Please wait.

Casting Processes I Dermot Brabazon Ref: Kalpakjian, Serope, Manufacturing engineering and technology. - 3rd ed. Reading, Mass : Addison-Wesley, 1995.

Similar presentations


Presentation on theme: "Casting Processes I Dermot Brabazon Ref: Kalpakjian, Serope, Manufacturing engineering and technology. - 3rd ed. Reading, Mass : Addison-Wesley, 1995."— Presentation transcript:

1 Casting Processes I Dermot Brabazon Ref: Kalpakjian, Serope, Manufacturing engineering and technology. - 3rd ed. Reading, Mass : Addison-Wesley, 1995. - 0201538466 MAIN LENDING 670.42/KAL (Also: MAIN LENDING 670/KAL )

2 Blow moulding The Material Transformation Process Products Ingot casting Molten Material Powders Casting Shapes Rolling Forging/ Press forming Stamping Pressing Sheet metal forming Continuous Casting/Rolling Injection moulding Machining Finishing Assembly Raw Material Special Extruding Single crystal pulling Firing/ Sintering SLS Increasing level of detail = Casting Processes

3 Casting The conversion of raw materials into useful shapes using phase transformations One of the first steps in converting raw materials into useful products Applicable to most materials –Metals –Ceramics –Plastics –Glass Also includes mixtures –Ceramic slips and slurries

4 Casting – a phase change forming process Form the shape from a fluid material state in a mould or container. These materials include Molten metals Monomer solutions Slips Slurries Change the liquid into a solid by Removing heat Removing suspending liquid Initiating a reaction –apply heat –inject reactants –irradiate with photons

5 Casting Fundamentals Casting advantages –High shape complexity with internal cavities –Large shape size and variety –Wide variety of materials –Ease of production –Variety of materials that can be cast –Close tolerances (some processes) –High surface finish (some processes) –Excellent mechanical properties (some processes) –Economic (for some lot sizes) Kalpakjian pp 262-263

6 Casting Fundamentals Casting disadvantages –High setup costs (some processes) –Low tolerances (some processes) –Low surface finish (some processes) –Porosity (some processes) –Inhomogeneities (some processes) –Poor mechanical properties (some processes)

7 Casting Fundamentals Overall Process: –Make mould –Pour in fluid to solidify –Cool/solidify –Remove shape from mould

8 Types of Casting Molten materials which solidify on cooling –Metals, ceramics, glasses Liquids which solidify by reactions with light, activators/hardeners or moisture –Plastics Slurries which solidify by the extraction of the suspending medium (usually water) –Ceramics

9 Casting Fundamentals for Molten Material Factors affecting solidification characteristics from the molten state: –Fluidity Flow of molten material into the cavity –Heat transfer effects During solidification and cooling –Solidification effects –Influence of the type of mould material Kalpakjian p 265

10 Fluidity of Molten Metal Fluidity is dependent on: –Characteristics of the fluid –Casting parameters

11 Fluidity - Characteristics of the fluid Basically, Fluidity is the ability of the liquid to flow into the mould Kalpakjian pp 274-275 If these increase: Temperature sensitivity of viscosity Surface tension Inclusions Freezing range Fluidity Reduces then

12 Theory of Fluid Flow Theory has three components: –Bernoulli's theorem –Continuity law –Laminar vs turbulent flow Kalpakjian pp 272-275

13 Bernoulli's theorem where h is the elevation above a reference plane, p is the pressure at that elevation, v is the velocity of the liquid at that elevation,  is the density of the liquid and g is the gravitational constant

14 Continuity Law For an incompressible liquid: Av = constant, called the flow rate where A is the cross sectional area and v is the velocity

15 Laminar vs. Turbulent Flow Laminar flow is preferred –Reynolds number (Re) less than 2000 Turbulent flow (Re >4,000) can cause air entrapment and dross (oxide) formation –results in defects R e =  VD/  where V and D are a fluid characteristic velocity and distance;  is density and  is viscosity.

16 Parts of casting mould to be included in fluid flow analysis Pouring basin –where the molten metal enters the mould Gating system –connects the pouring basin to the rest of the mould through Sprue (connects the pouring basin to the runners) Runners (carry the molten metal to the mould) Risers –act as reservoirs to supply molten material as it solidifies and shrinks

17 Kalpakjian p 275 Fluidity - Casting parameters Mould design Mould material Mould surface characteristics Degree of superheat Rate of pouring Heat transfer

18 Casting Fundamentals for Molten Material Factors affecting solidification characteristics from the molten state –Fluidity Flow of molten material into the cavity –Heat transfer effects During solidification and cooling –Solidification effects –Influence of the type of mould material Kalpakjian p 265

19 Heat Transfer Very complex phenomenon Very simple process –A cold mould extracts heat from the melt causing it to solidify Critical to design of mould Can compute a relative time for solidification Kalpakjian p 275

20 Heat Transfer - solidification time Solidification time is proportional to the square of the volume divided by the surface area –A sphere will have a much longer solidification time than a complex shape of the same volume

21 Effect of Cooling Rate –Rate of cooling is critical for the structure of the material and hence its properties Slow cooling (~0.1K/s) gives large grain sizes Fast cooling (~10 K/s) gives small grain sizes Very fast cooling rates (>10 K/s) produce amorphous materials –Implications:- Should design artifact to be thin and not massive Require "chills" to control cooling rate

22 Casting Fundamentals for Molten Material Factors affecting solidification characteristics from the molten state –Fluidity Flow of molten material into the cavity –Heat transfer effects During solidification and cooling –Solidification effects –Influence of the type of mould material Kalpakjian p 265

23 Solidification Effects This is where the material becomes important –Plastics Not as critical as for metals –Semiconductors Specialty crystal growing Single crystal so no microstructures –Glass No microstructure (amorphous) Kalpakjian pp 263-277

24 Solidification Effects - Metals Molten metal solidification events depend on the type of material –Pure metals –Alloy

25 Solidification of Pure Metals Solidification occurs at one temperature Solidification occurs from the mould walls to the center in a plane front Grains tend to be equiaxed in the centre of the casting, but grow outward from the mould wall in a columnar structure Nucleation agents can cause a more equiaxed structure (more uniform grains and size distribution)

26 Solidification of Alloys Eutectics behave similarly to pure metals Cast grain structure depends on phase diagram

27 Kalpakjian p 120 Copper-Nickel Phase Diagram

28 Solidification of Alloys Alloys with liquidus and solidus temperatures have a physical “mushy zone” “Mushy zone” has solid particles and liquid co-existing Solid particles tend to be dendritic (tree like) in nature that grow from the mould wall Microstructure highly dependent on cooling rate Freezing range is the temperature difference between the liquidus and solidus temperatures Ferrous alloys tend to have small freezing ranges Aluminium and magnesium alloys tend to have wide freezing ranges

29 Kalpakjian p 267 Crystallization Phenomena

30 Why is solidification so important for metals? The solidification events determine the microstructure of the product: –Grain size –Grain distribution –Grain morphology –Grain boundaries –Grain composition –Porosity content and type

31 Influence of grain size and microporosity If these decrease: Grain size Microporosity Kalpakjian p 269 Cracking tendency decreases Strength and Ductility increase then

32 Structure-Property Relationships Slow cooling- uniform composition Normal cooling- micro and macro segregation Microsegregation –Segregation of alloying elements within the grains or dendrites –Dendrite surface has higher concentration of alloying elements than core Macrosegregation –Segregation of alloying elements across the casting itself

33 Structure-Property Relationships Types of macrosegregration –Normal Constituents with lower melting temperature are driven away from the mould wall to leave a higher concentration at casting center –Inverse Melt enters the cavities among the dendrites formed at the surface –Gravity Heavy elements sink to the bottom Macrosegregation gives rise to inhomogeneous microstructures and therefore bad mechanical properties

34 Avoidance of Macrosegregation Use –Nucleation agents –Create more grains and better chemical homogeneity by mechanical means Rheocasting - stir the metal while it is in the mushy zone Vibration Electromagnetic stirring

35 Solidification Effects - Shrinkage The metal shrinks as it cools –in the melt –as it solidifies as a solid (largest) Kalpakjian p 279 Aluminium6.6% Carbon Steel2.5-3% Copper4.9% Gray iron-2.55 Volume Solid Contraction of some metals:

36 Impact of Shrinkage on mould Design Dimensions of mould moulds must be constructed to be larger than the final product because the metal shrinks as it cools –Patternmakers ruler Warpage due to differential shrinkage Defects due to induced stresses Porosity

37 Part Porosity Caused by shrinkage or gases Detrimental to the strength and ductility of the metal, the surface finish and pressure integrity of the part

38 Shrinkage Porosity Caused by differential cooling Thin sections cool faster than thick sections leading to too little material in the thick sections When the thick sections begin to solidify, porosity develops due to the lack of feed metal which is often cut off by already solidified thin sections mould designers avoid this by the use of chills and proper flow channels and riser placement

39 Gas Porosity Liquid metals have greater solubility for gases than solid metals Any gas in the melt appears as spherical cavities Melt treatment must include various degassification processes Can also have gases arising from reactions (melt - mould)

40 List of other defect classes Projections –fins, flash, swells (massive), rough surfaces Cavities –internal, exposed, blowholes, pinholes Discontinuities –cracks, cold and hot tearing, cold shuts Defective surface –folds, laps, scars, adhering sand, oxide scale Incomplete casts –insufficient metal, leaky moulds Incorrect dimensions or shape –improper shrinkage allowance, warping, etc Porosity See Kalpakjian pp 279-281

41 Casting Fundamentals for Molten Material Factors affecting solidification characteristics from the molten state –Fluidity Flow of molten material into the cavity –Heat transfer effects During solidification and cooling –Solidification effects –Influence of the type of mould material Kalpakjian p 265

42 Influence of the mould material Mould material impacts on: –the heat transfer rate –the surface finish –the number of and hence grain size of the microstructure Selection of the mould material is strongly influenced by the process


Download ppt "Casting Processes I Dermot Brabazon Ref: Kalpakjian, Serope, Manufacturing engineering and technology. - 3rd ed. Reading, Mass : Addison-Wesley, 1995."

Similar presentations


Ads by Google