Download presentation
1
NETWORK-ON-CHIP (NOC): A New SoC Paradigm
Dr. Konstantinos Tatas
2
PRESENTATION OUTLINE Introduction Part A Part B Summary
Motivation – SoC Communication Current Solutions NoC Concept Part B Summary
3
THE MANY CORES ERA Source:
International Roadmap for Semiconductors 2007 edition (
4
THE GROWING GAP: COMPUTATION VS. COMMUNICATION
2:1 9:1 Taken From ITRS, 2001
5
GROWING CHIP DENSITY Future? Design complexity - high IP reuse
1998 ASIC mm 2012 SoC - 22nm Memory, I/O P Future? Design complexity - high IP reuse Efficient high performance interconnect Scalability of communication architecture
6
Traditional SoC Nightmare
The architecture is tightly coupled DMA CPU DSP Mem Ctrl. Bridge MPEG I o The “Board-on-a-Chip” Approach C System Bus Control Wires Peripheral Bus Variety of dedicated interfaces Poor separation between computation and communication. Design Complexity Unpredictable performance
7
Computational demands of future multimedia applications - Memory bandwidth scales proportional
K. Uchiyama., “Power-Efficient Heterogeneous Parallelism for Digital Convergence”, VLSI Circuit Digest of Technical Papers, IEEE p 6-9, June 2008 Jian Li, “3D Integration opportunities and challenges”, ISCAS 2008 tutorial on 3D
8
Shared address space communications
9
System bus
10
Cross-bar
11
Multi-stages network on chip
12
An NoC example Source: ossum, MPSoC’07
13
NOC Topologies Regular topologies: general-purposed on-chip multiprocessors Custom topologies:
14
NoC vs. “Off-Chip” Networks
What is Different? Routers on Planar Grid Topology Short Point-To-Point Links between routers Unique VLSI Cost Sensitivity: Area-Routers and Links Power
15
NoC vs. “Off-Chip” Networks
No legacy protocols to be compliant with … No software simple and hardware efficient protocols Different operating env. (no dynamic changes and failures)
16
Custom Network Design – You design what you need!
NoC vs. “Off-Chip” Networks No legacy protocols to be compliant with … No software simple and hardware efficient protocols Different operating env. (no dynamic changes and failures) Custom Network Design – You design what you need!
17
Custom Network Design – You design what you need!
NoC vs. “Off-Chip” Networks No legacy protocols to be compliant with … No software simple and hardware efficient protocols Different operating env. (no dynamic changes and failures) Custom Network Design – You design what you need! Example1: Replace modules Replace
18
Custom Network Design – You design what you need!
NoC vs. “Off-Chip” Networks No legacy protocols to be compliant with … No software simple and hardware efficient protocols Different operating env. (no dynamic changes and failures) Custom Network Design – You design what you need! Example2: Adapt Links Adapt Links
19
Non-Segmented Bus (NS-Bus) Segmented Bus (S-Bus) Point-To-Point (PTP)
NoC Cost Scalability vs. Alternatives Compare the cost of: NoC Non-Segmented Bus (NS-Bus) Segmented Bus (S-Bus) Point-To-Point (PTP)
20
Why noc? Bus NoC Longer connections higher parasitic capacitance
Performance does not downgrade with network scaling Arbitration grows and becomes a bottleneck Arbitration and routing are distributed Bandwidth is limited and shared by all cores Aggregated bandwidth scales with network size Latency is wire-speed once arbitration granted control Multiple hops increase latency Well-known and simple concepts Further study needed
21
Which are the main challenges?
Communication infrastructure Communication paradigm selection Application mapping optimization Programming model Physical design Design automation/tool-flow integration
22
Basic Switching Techniques
Circuit Switching A real or virtual circuit establishes a direct connection between source and destination. Packet Switching Each packet of a message is routed independently. The destination address has to be provided with each packet. Store and Forward Packet Switching The entire packet is stored and then forwarded at each switch. Cut Through Packet Switching The flits of a packet are pipelined through the network. The packet is not completely buffered in each switch. Virtual Cut Through Packet Switching The entire packet is stored in a switch only when the header flit is blocked due to congestion. Wormhole Switching is cut through switching and all flits are blocked on the spot when the header flit is blocked.
23
Circuit Switching (are they noc?)
Phases: Circuit Setup Transmission Tear Down Disadvantages: Exclusive allocation of resources Long setup phase Advantages: High performance - throughput and latency Low power consumption Low overhead during transmission phase Predictable transmission
24
Packet Switching vs Circuit Switching
25
NoC Router
26
NoC-based MPSoC nodes Routers Links Network Interfaces (NIs)
Processing Elements (PEs), such as CPUs, custom IPs, DSPs, etc. storage elements (embedded memory blocks), Routers Links Network Interfaces (NIs) Often a switch together with its host node memory is referred to as a tile.
27
NoC Topologies Regular/irregular Direct/indirect
each node has a direct point-to-point link to a subset of other nodes in the system, called neighboring nodes
28
2D Mesh simplest and most popular topology for NoCs.
Every switch, except those at the edges, is connected to four neighboring switches and one node.
29
2D Torus layout of a regular mesh except that nodes at the edges are connected to switches at the opposite edge via wrap-around routing channels. Every switch has five ports The limitation of this topology affects the long end-around connections
30
Octagon well-established direct topology found in NoCs.
ring of 8 nodes connected by 12 bi-directional links. links provide two-hop communication between any pair of nodes in the ring simple algorithms for fast yet efficient shortest-path routing. In case a platform consists of more than eight nodes, the octagon is extended to multidimensional space
31
Fat-tree and butterfly fat-tree
nodes are connected to an architecture's external switch switches have point-to-point links to other switches. processing units and memory modules are assigned to the leafs of the trees, switches are placed at the vertices, communication involves climbing up and down some part of the tree. A pair of coordinates is used to label each node, ($l$, $p$), where $l$ denotes a node's level and $p$ gives its position within this level.
32
Polygon widely accepted topology
packets travel in a loop from one router to the next. We can add chords to the circle if chords are inserted only between opposite routers, the topology is called a spidergon.
33
Star central router in the middle of the star,
computational resources, or subnetworks, in the spikes of the star. The capacity requirements of the central router are quite large, significant possibility of congestion in the middle of the star
34
Flow Control intra-switch switch-to-switch end-to-end Buffered
Bufferless end-to-end
35
ACK/NACK handshaking protocol
When a sender puts data on the link, it activates a VALID signal. When the receiver is ready to consume the valid data, it activates the corresponding ACK signal. If the data is corrupt or there is no buffer space to store them, a NACK signal is activated instead. Upon receipt of a NACK, the sender starts resending flits starting from the not acknowledged one inherently supports fault tolerance, additional buffer space required to keep sent flits in case retransmission is required.
36
Stall/go requires just two control wires
one going forward, signifying data availability, one going backward and signaling either a condition of buffers filled ("STALL") or of buffers free ("GO")
37
Credit-based transmitter has a "credit" counter
initialized to the value of empty buffer slots of the receiver decrements it every time a flit is sent. The credit counter must be updated in case the receiver consumes or forwards a flit and therefore increases its buffer space. a credit value that is sent back to the transmitter to be added to the current value of the credit counter. transmitter stalls when the credit value is zero and resumes when its value increases again.
38
NI Design logic required to connect the nodes to the NoC.
NIs can differ significantly depending on the nature of the node Using a NI allows IPs and communication infrastructure to be designed independently One end of a NI is connected to a router using the selected flow control protocol the other to the node IP Since most IPs are designed to communicate through a bus, the NI uses a bus interface NI is not simply a protocol adapter from a processor bus to a router port. Ideally, the NI must offer the processing cores the view of a shared memory system, and the network itself should be transparent.
39
NI services adaptation services transaction reordering services,
packetization/depacketization protocol conversion and clock domain crossing. absolute minimum services required of the NI so that data can be sent and received on the NoC transaction reordering services, error and flow control services error detection and/or correction request retransmission when required route computation services Source routing upper layer services Cache coherence
40
Typical NoC Packet Format
Header routing and network control information. In the case of distributed routing the information required is the destination and source addresses in the case of source routing the complete routing information is written In the case of variable packet size a length field is required Payload Tail sequence number error control fields such as hamming code or CRC fields
41
Source vs Distributed Routing
In source routing the entire routing path is computed at the source and appended to the packet. The routers do not make any routing decisions, in distributed routing, the routing path is decided in a hop-by-hop basis at each router even for deterministic routing algorithms. The only information required to be found in the packet is the destination address. The advantage of source routing is that it requires simple routers and can easily support irregular architectures. Its disadvantage is that it does not provide adaptiveness and requires more complex NIs and packets.
42
Source vs Distributed Routing
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.