Download presentation
Presentation is loading. Please wait.
Published byJessie Pope Modified over 9 years ago
1
8/16/99 Computer Vision and Modeling
2
8/16/99 Principal Components with SVD
3
8/16/99 Linear Dimension Reduction: High-dimensional Input Space
4
8/16/99 Linear Subspace: += + 1.7=
5
8/16/99 Linear Subspace:
6
8/16/99 Principal Components Analysis: m
7
8/16/99 Examples: Data: Kirby, Weisser, Dangelmayer 1993
8
8/16/99 Examples: Data: PCA New Basis Vectors
9
8/16/99 Examples: Data: PCA EigenLips
10
8/16/99 Examples: Face Recognition with Eigenfaces (Turk+Pentland, ):
11
8/16/99 Examples: Face Recognition System (Moghaddam+Pentland):
12
8/16/99 Examples: Visual Cortex Hubel
13
8/16/99 Examples: Visual Cortex Hubel
14
8/16/99 Examples: Receptive Fields Hubel
15
8/16/99 Examples: Receptive Fields Hancock et al: The principal components of natural images
16
8/16/99 Examples: Receptive Fields Hancock et al: The principal components of natural images
17
8/16/99 Examples: Active Appearance Models (AAM): (Cootes et al)
18
8/16/99 Examples: Active Appearance Models (AAM): (Cootes et al)
19
8/16/99 Examples: Active Appearance Models (AAM): (Cootes et al)
20
8/16/99 Examples: 3D Morphable Models (Blanz+Vetter)
21
8/16/99 Examples: 3D Morphable Models (Blanz+Vetter)
22
8/16/99 Review E(V) VV Constrain - Analytically derived: Affine, Twist/Exponential Map Learned: Linear/non-linear Sub-Spaces
23
8/16/99 S = (p,…,p ) E(S) Constrain 1n Non-Rigid Constrained Spaces
24
8/16/99 Non-Rigid Constrained Spaces Nonlinear Manifolds: Linear Subspaces : Small Basis Set Principal Components Analysis Mixture Models
25
8/16/99 Examples: Eigen Tracking (Black and Jepson)
26
8/16/99 Examples: Shape Models for tracking:
27
8/16/99 More generic Feature/Shape Models: Visual Motion Contours: Blake, Isard, Reynard
28
8/16/99 More generic Feature/Shape Models: Visual Motion Contours: Blake, Isard, Reynard
29
8/16/99 Linear Discriminant Analysis:
30
8/16/99 Fisher’s linear discriminant:
31
8/16/99 Example: Eigenfaces vs Fisherfaces Glasses or not Glasses ?
32
8/16/99 Example: Eigenfaces vs Fisherfaces Input New Axis Belhumeur, Hespanha, Kriegman 1997
33
8/16/99 Nonlinear Manifolds Nonlinear Manifolds: Linear Subspaces : Small Basis Set Principal Components Analysis Mixture Models
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.