Presentation is loading. Please wait.

Presentation is loading. Please wait.

8/16/99 Computer Vision and Modeling. 8/16/99 Principal Components with SVD.

Similar presentations


Presentation on theme: "8/16/99 Computer Vision and Modeling. 8/16/99 Principal Components with SVD."— Presentation transcript:

1 8/16/99 Computer Vision and Modeling

2 8/16/99 Principal Components with SVD

3 8/16/99 Linear Dimension Reduction: High-dimensional Input Space

4 8/16/99 Linear Subspace: += + 1.7=

5 8/16/99 Linear Subspace:

6 8/16/99 Principal Components Analysis: m

7 8/16/99 Examples: Data: Kirby, Weisser, Dangelmayer 1993

8 8/16/99 Examples: Data: PCA New Basis Vectors

9 8/16/99 Examples: Data: PCA EigenLips

10 8/16/99 Examples: Face Recognition with Eigenfaces (Turk+Pentland, ):

11 8/16/99 Examples: Face Recognition System (Moghaddam+Pentland):

12 8/16/99 Examples: Visual Cortex Hubel

13 8/16/99 Examples: Visual Cortex Hubel

14 8/16/99 Examples: Receptive Fields Hubel

15 8/16/99 Examples: Receptive Fields Hancock et al: The principal components of natural images

16 8/16/99 Examples: Receptive Fields Hancock et al: The principal components of natural images

17 8/16/99 Examples: Active Appearance Models (AAM): (Cootes et al)

18 8/16/99 Examples: Active Appearance Models (AAM): (Cootes et al)

19 8/16/99 Examples: Active Appearance Models (AAM): (Cootes et al)

20 8/16/99 Examples: 3D Morphable Models (Blanz+Vetter)

21 8/16/99 Examples: 3D Morphable Models (Blanz+Vetter)

22 8/16/99 Review E(V) VV Constrain - Analytically derived: Affine, Twist/Exponential Map Learned: Linear/non-linear Sub-Spaces

23 8/16/99 S = (p,…,p ) E(S) Constrain 1n Non-Rigid Constrained Spaces

24 8/16/99 Non-Rigid Constrained Spaces Nonlinear Manifolds: Linear Subspaces : Small Basis Set Principal Components Analysis Mixture Models

25 8/16/99 Examples: Eigen Tracking (Black and Jepson)

26 8/16/99 Examples: Shape Models for tracking:

27 8/16/99 More generic Feature/Shape Models: Visual Motion Contours: Blake, Isard, Reynard

28 8/16/99 More generic Feature/Shape Models: Visual Motion Contours: Blake, Isard, Reynard

29 8/16/99 Linear Discriminant Analysis:

30 8/16/99 Fisher’s linear discriminant:

31 8/16/99 Example: Eigenfaces vs Fisherfaces Glasses or not Glasses ?

32 8/16/99 Example: Eigenfaces vs Fisherfaces Input New Axis Belhumeur, Hespanha, Kriegman 1997

33 8/16/99 Nonlinear Manifolds Nonlinear Manifolds: Linear Subspaces : Small Basis Set Principal Components Analysis Mixture Models


Download ppt "8/16/99 Computer Vision and Modeling. 8/16/99 Principal Components with SVD."

Similar presentations


Ads by Google