Download presentation
1
Lecture 3-1: Coding and Error Control
ECE591-01
2
Universität Karlsruhe Institut für Telematik
Mobilkommunikation SS 1998 Signals Physical representation of data Function of time and location Signal parameters: parameters representing the value of data classification continuous time/discrete time continuous values/discrete values analog signal = continuous time and continuous values digital signal = discrete time and discrete values Signal parameters of periodic signals: period T, frequency f=1/T, amplitude A, phase shift sine wave as special periodic signal for a carrier: s(t) = At sin(2 ft t + t) Prof. Dr. Dr. h.c. G. Krüger E. Dorner / Dr. J. Schiller
3
Universität Karlsruhe Institut für Telematik
Mobilkommunikation SS 1998 Signals Different representations of signals amplitude (amplitude domain) frequency spectrum (frequency domain) phase state diagram (amplitude M and phase in polar coordinates) Composed signals transferred into frequency domain using Fourier transformation Digital signals need infinite frequencies for perfect transmission modulation with a carrier frequency for transmission (analog signal!) A [V] Q = M sin A [V] t[s] I= M cos f [Hz] Prof. Dr. Dr. h.c. G. Krüger E. Dorner / Dr. J. Schiller
4
Universität Karlsruhe Institut für Telematik
Mobilkommunikation SS 1998 Multiplexing Multiplexing in 4 dimensions space (si) time (t) frequency (f) code (c) Goal: multiple use of a shared medium Important: guard spaces needed! channels ki k1 k2 k3 k4 k5 k6 c t c s1 t s2 f f c t s3 f Prof. Dr. Dr. h.c. G. Krüger E. Dorner / Dr. J. Schiller
5
Universität Karlsruhe Institut für Telematik
Mobilkommunikation SS 1998 Frequency multiplex Separation of the whole spectrum into smaller frequency bands A channel gets a certain band of the spectrum for the whole time Advantages no dynamic coordination necessary works also for analog signals Disadvantages waste of bandwidth if the traffic is distributed unevenly inflexible k1 k2 k3 k4 k5 k6 c f t Prof. Dr. Dr. h.c. G. Krüger E. Dorner / Dr. J. Schiller
6
Universität Karlsruhe Institut für Telematik
Mobilkommunikation SS 1998 Time multiplex A channel gets the whole spectrum for a certain amount of time Advantages only one carrier in the medium at any time throughput high even for many users Disadvantages precise synchronization necessary k1 k2 k3 k4 k5 k6 c f t Prof. Dr. Dr. h.c. G. Krüger E. Dorner / Dr. J. Schiller
7
Time and frequency multiplex
Universität Karlsruhe Institut für Telematik Mobilkommunikation SS 1998 Time and frequency multiplex Combination of both methods A channel gets a certain frequency band for a certain amount of time Example: GSM Advantages protection against frequency selective interference but: precise coordination required k1 k2 k3 k4 k5 k6 c f ince different frequency components of the signal are affected independently, it is highly unlikely that all parts of the signal will be simultaneously affected by a deep fade.Frequency-selective fading channels are also dispersive, in that the signal energy associated with each symbol is spread out in time. This causes transmitted symbols that are adjacent in time to interfere with each other. t Prof. Dr. Dr. h.c. G. Krüger E. Dorner / Dr. J. Schiller
8
Universität Karlsruhe Institut für Telematik
Mobilkommunikation SS 1998 Code multiplex Each channel has a unique code All channels use the same spectrum at the same time Advantages bandwidth efficient no coordination and synchronization necessary good protection against interference Disadvantages varying user data rates more complex signal regeneration Implemented using spread spectrum technology k1 k2 k3 k4 k5 k6 c f t Prof. Dr. Dr. h.c. G. Krüger E. Dorner / Dr. J. Schiller
9
Universität Karlsruhe Institut für Telematik
Mobilkommunikation SS 1998 Modulation Digital modulation digital data is translated into an analog signal (baseband) ASK, FSK, PSK differences in spectral efficiency, power efficiency, robustness Analog modulation shifts center frequency of baseband signal up to the radio carrier Basic schemes Amplitude Modulation (AM) Frequency Modulation (FM) Phase Modulation (PM) Prof. Dr. Dr. h.c. G. Krüger E. Dorner / Dr. J. Schiller
10
Modulation and Demodulation
Universität Karlsruhe Institut für Telematik Mobilkommunikation SS 1998 Modulation and Demodulation analog baseband signal digital data digital modulation analog modulation radio transmitter radio carrier analog baseband signal digital data analog demodulation synchronization decision radio receiver radio carrier Prof. Dr. Dr. h.c. G. Krüger E. Dorner / Dr. J. Schiller
11
Universität Karlsruhe Institut für Telematik
Mobilkommunikation SS 1998 Digital modulation Modulation of digital signals known as Shift Keying Amplitude Shift Keying (ASK): very simple low bandwidth requirements very susceptible to interference Frequency Shift Keying (FSK): needs larger bandwidth Phase Shift Keying (PSK): more complex robust against interference 1 1 t 1 1 t he simplest and most common form of ASK operates as a switch, using the presence of a carrier wave to indicate a binary one and its absence to indicate a binary zero. This type of modulation is called on-off keying, and is used at radio frequencies to transmit Morse code (referred to as continuous wave operation). More sophisticated encoding schemes have been developed which represent data in groups using additional amplitude levels. For instance, a four-level encoding scheme can represent two bits with each shift in amplitude; an eight-level scheme can represent three bits; and so oninimum frequency-shift keying or minimum-shift keying (MSK) is a particular spectrally efficient form of coherent FSK. In MSK the difference between the higher and lower frequency is identical to half the bit rate. Consequently, the waveforms used to represent a 0 and a 1 bit differ by exactly half a carrier period. This is the smallest FSK modulation index that can be chosen such that the waveforms for 0 and 1 are orthogonal. A variant of MSK called GMSK is used in the GSM mobile phone standard 1 1 t Prof. Dr. Dr. h.c. G. Krüger E. Dorner / Dr. J. Schiller
12
Frequency Shift Keying (FSK):
13
Advanced Phase Shift Keying
Universität Karlsruhe Institut für Telematik Advanced Phase Shift Keying Mobilkommunikation SS 1998 Q I 1 BPSK (Binary Phase Shift Keying): bit value 0: sine wave bit value 1: inverted sine wave 0 = Same phase, 1=Opposite phase A cos(2πft), A cos(2πft+π) low spectral efficiency robust, used e.g. in satellite systems QPSK (Quadrature Phase Shift Keying): 2 bits coded as one symbol symbol determines shift of sine wave needs less bandwidth compared to BPSK 11=A cos(2πft+45°), 10=A cos(2πft+135°), 00=A cos(2πft+225°), 01=A cos(2πft+315°) Q I 11 01 10 00 A t 11 10 00 01 Prof. Dr. Dr. h.c. G. Krüger E. Dorner / Dr. J. Schiller
14
Quadrature Amplitude Modulation
Universität Karlsruhe Institut für Telematik Mobilkommunikation SS 1998 Quadrature Amplitude Modulation Quadrature Amplitude Modulation (QAM) combines amplitude and phase modulation it is possible to code n bits using one symbol 2n discrete levels, n=2 identical to QPSK Bit error rate increases with n, but less errors compared to comparable PSK schemes Example: 16-QAM (4 bits = 1 symbol) Symbols 0011 and 0001 have the same phase φ, but different amplitude 0000 and 1000 have different phase, but same amplitude. 0000 0001 0011 1000 Q I 0010 φ a Prof. Dr. Dr. h.c. G. Krüger E. Dorner / Dr. J. Schiller
15
Channel Capacity Capacity = Maximum data rate for a channel
Nyquist Theorem: Bandwidth = B Data rate < 2 B Bi-level Encoding: Data rate = 2 × Bandwidth Multilevel: Data rate = 2 × Bandwidth × log 2 M Example: M=4, Capacity = 4 × Bandwidth
16
Shannon’s Theorem Bandwidth = B Hz Signal-to-noise ratio = S/N
Maximum number of bits/sec = B log2 (1+S/N) Example: Phone wire bandwidth = 3100 Hz S/N = 30 dB 10 Log 10 S/N = 30 Log 10 S/N = 3 S/N = 1000 Capacity = 3100 log 2 (1+1000) = 30,894 bps
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.