Download presentation
Presentation is loading. Please wait.
Published byGriffin Stokes Modified over 9 years ago
1
Antal Nagy Department of Image Processing and Computer Graphics University of Szeged 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary1
2
Human perception Image degradation Convolution, Furier Transform Noise Image operations ◦ Frequency filters ◦ Spatial filtering Inverse filtering Wiener filtering 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary2
3
Aim ◦ to improve the perception of information images for human viewers ◦ to provide ‘better’ input for other automated image processing techniques 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary3
4
No general theory for determining what is good image enhancement ◦ If it looks good, it is good!? 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary4
5
5
6
6
7
http://www.youtube.com/watch?v=_d_l5nsnIvM 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary7
8
Focus ◦ Noise reduction techniques Quantitative measures can determine which techniques are most appropriate ◦ How does it improve e.g. the result of the next automated image processing step? E.g. image segmentation 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary8
9
The first stage of any vision system ◦ Can we do it in perfect way? Sometimes yes Industrial applications Ideal background Ideal lighting Faultless camera Sometimes not Industrial applications Despite of supreme conditions we got degraded image Accumulation of the faults of the electrical components Physical phenomena E.t.c. Medical image acqusition 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary9
10
Non-linear mapping ◦ E.g., non-linear sensitivity, image of the straight line is not straight e.t.c. Blurring ◦ Image of a point is blob Moving during the image acquisition Probabilistic noise 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary10
11
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary11 Frequency domain Spatial domain
12
◦ Multiplication point by point 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary12
13
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary13 * = = · Multiplication Convolution Fourier transf. Inverse Fourier transf.
14
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary14 Definition
15
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary15
16
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary16 x x x
17
Even functions that are not periodic can be expressed as the integrals of sines and/or cosines multiplied by a weighting function. The formulation in this case is the Fourier transform. 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary17 ∑ =∑ =∑ =∑ =
18
Taught mathematics in Paris Eventually traveled to Egypt with Napoleon to become the secretary of the Institute of Egypt After fall of Napoleon worked at Bureau of Statistics Elected to National Academy of Sciences in 1817 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary18
19
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary19 (invers transform) (continous) base-functions
20
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary20 base-functions (invers transform)
21
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary21 u=0, v=0 u=1, v=0u=2, v=0 u=-2, v=0u=-1, v=0 u=0, v=1u=1, v=1u=2, v=1 u=-2, v=1u=-1, v=1 u=0, v=2u=1, v=2u=2, v=2 u=-2, v=2u=-1, v=2 u=0, v=-1u=1, v=-1u=2, v=-1 u=-2, v=-1u=-1, v=-1 u=0, v=-2u=1, v=-2u=2, v=-2 u=-2, v=-2u=-1, v=-2 u v wavelength:
22
F (0,0) - value is by far the largest component of the image, Other frequency components are usually much smaller, The magnitude of F ( X,Y ) decreases quickly ◦ Instead of displaying the |F(u,v)| we display log( 1 + |F(u,v)| ) real function usually 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary22
23
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary23 x y v u
24
The 2D Fourier transform can be separated The edges on the image appears as point series in perpendicular direction in Fourier transform of the image and vice versa. 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary24
25
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary25 Image-space Frequency space original rotation linearity shift scale
26
Noise unknown subtraction not possible Periodic noise ◦ N ( u,v ) can be estimated from G ( u,v ) 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary26
27
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary27 Gaussian ◦ In an image due to factors Electronic circuit noise Sensor noise due to poor illumination High temperature Rayleigh ◦ Range imaging Exponential and gamma ◦ Laser imaging Impulse ◦ Faulty switching Uniform density ◦ Practical situations
28
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary28
29
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary29
30
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary30
31
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary31
32
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary32
33
Electrical and electromechanical interference Spatial dependent noise Can be reduced via frequency domain filtering ◦ Pair of impulses 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary33
34
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary34 T: A=[a(i,j)] → B=[b(i,j)] b(i,j)=T{a(i,j), S(i,j), i, j} intensity enviroment position
35
Global: b(i,j)=T{A} (S(i,j)=A) (e.g. Fourier-transformation) Local: T{a(i,j), S} given size of S and independent from the position (e.g. convolution with a mask) Local, adaptive: T{a(i,j), S(i,j), i, j} the size of S(i,j) is independent from the size of image (e.g. adaptive thresholding) Point operation: T{a(i,j)} (e.g. gamma-correction, histogram-equalization) 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary35
36
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary36 D 0 : cutoff frequency All frequencies less than D 0 will be passed, Other frequencies will be filtered out. Bluring and ringing properties Scope: noise filtering
37
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary37 F F -1. Input image Frequency- mask
38
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary38 Original5 1530 80230 Cutoff frequencies
39
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary39 n: order of the filter Properties: Smooth transition in blurring No ring effect (continouos filter) Smoothed edges
40
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary40 Original5 1530 80230 Cutoff frequencies
41
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary41
42
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary42 Original5 1530 80230 Cutoff frequencies
43
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary43
44
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary44
45
Bandreject and Bandpass Filters Notch Filters ◦ Rejects or passes frequencies in a predefined neighborhood about the frequency rectangle ◦ Zero-phase-shift filters Symmetric about the origin ( u 0,v 0 ) ( -u 0,-v 0 ) ◦ Product of highpass filters whose centers have been translated to the centers of the notches. 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary45
46
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary46 noisy image frequency mask frequency image filtered image 1 0
47
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary47
48
Mean Filter 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary48 where g input image, S (x,y) neighborhood of (s,t) point, mn number of pixels in neighborhood. 3x3 neighborhood
49
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary49
50
Averaging ◦ same weight for every pixels in neighborhood, Weighted average ◦ weights for pixels in the neighborhood (generally decreasing with the distance). The sum of the Noise Filtering/smoothing masks elements is 1! 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary50
51
Smooth when the difference between the intensity value of the given pixel and the mean of the neighborhood is larger than threshold value defined in advance. 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary51
52
Arithmetic mean filter Geometric mean filter ◦ Lose less image details Harmonic mean filter ◦ Works well for salt noise, Gaussian ◦ Fails for pepper noise Contraharmonic mean filter ◦ Q >0 pepper, Q <0 salt 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary52
53
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary53
54
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary54
55
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary55
56
Median filter Max and min filters 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary56 50% 0% 100%
57
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary57
58
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary58
59
Behavior changes based on statistical characteristic in the filter region ◦ Improved filtering power ◦ Increase in filter complexity ◦ Noise only! 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary59
60
Adaptive, Local noise reduction filter ◦ Mean ◦ Variance Local region S xy ◦ g(x,y) intensity value ◦ the variance of the noise corrupting f(x,y) to form g(x,y) ◦ m L local mean ◦ local variance 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary60
61
Adaptive, Local noise reduction filter 1. If is zero, the filter should return the value of g(x,y) Zero noise case 2. If the local variance is high relative to the filter should return a value close to g(x,y) Edges should be preserved 3. If the variances are equal the filter should return the arithmetic mean value Local noise averaging 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary61
62
Simplest approach to restoration is direct inverse filtering 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary62 experience: H: quickly decreasing function, N: not (so quickly) decreasing let us cut the high frequencies No additive noise
63
If we only know the degradation function ◦ Can not recover the undegraded image H ( u,v ) is not known Get around the zero or small value problem ◦ To limit the filter frequencies to values near the origin H (0,0) is usually the highest value of H ( u,v ) in the frequency domain 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary63
64
Inverse filtering makes no explicit provision for handling noise Approach incorporates ◦ Degradation function ◦ Statistical characteristics of noise 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary64
65
Method ◦ Considering images and noise as random variable ◦ Objective is to find an estimate of the uncorrupted image f such that the mean square error between them is minimized. 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary65
66
17th SSIP 2009, 2 - 11 July, Debrecen, Hungary 66 spectrum Wiener filter input result original spectrum of the result
67
Edge preserving filters ◦ E.g. anisotropic diffusion Wavelet denoising Point operations ◦ E.g. gamma correction, histogram operations Iterative filtering E.t.c. 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary67
68
We always should consider some kind of noise model ◦ Even when working on phantom data Should do in automatic way ◦ Have to chose carefully the method Depends on the given task ◦ Determining the parameters What we gain? ◦ Less problem afterwards ◦ Better final result Even no other technique will be applied 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary68
69
Digital Image Processing ◦ Gonzalez and Woods ◦ www.ImageProcessingPlace.com www.ImageProcessingPlace.com Course on Image Processing at University of Szeged ◦ Attila Kuba, Kálmán Palágyi Image Restoration presentation ◦ Attila Kuba ◦ SSIP 2006 17th SSIP 2009, 2 - 11 July, Debrecen, Hungary69
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.