Download presentation
Presentation is loading. Please wait.
Published byErnest Lambert Modified over 9 years ago
1
Neural networks for data mining Eric Postma MICC-IKAT Universiteit Maastricht
2
Overview Introduction: The biology of neural networks the biological computer brain-inspired models basic notions Interactive neural-network demonstrations Perceptron Multilayer perceptron Kohonen’s self-organising feature map Examples of applications
3
A typical AI agent
4
Two types of learning Supervised learningSupervised learning curve fitting, surface fitting,...curve fitting, surface fitting,... Unsupervised learningUnsupervised learning clustering, visualisation...clustering, visualisation...
5
An input-output function
6
Fitting a surface to four points
7
Regression
8
Classification
9
The history of neural networks A powerful metaphor A powerful metaphor Several decades of theoretical analyses led to the formalisation in terms of statistics Several decades of theoretical analyses led to the formalisation in terms of statistics Bayesian framework Bayesian framework We discuss neural networks from the original metaphorical perspective We discuss neural networks from the original metaphorical perspective
10
(Artificial) neural networks The digital computer versus the neural computer
11
The Von Neumann architecture
12
The biological architecture
13
Digital versus biological computers 5 distinguishing properties speed speed robustness robustness flexibility flexibility adaptivity adaptivity context-sensitivity context-sensitivity
14
Speed: The “hundred time steps” argument The critical resource that is most obvious is time. Neurons whose basic computational speed is a few milliseconds must be made to account for complex behaviors which are carried out in a few hudred milliseconds (Posner, 1978). This means that entire complex behaviors are carried out in less than a hundred time steps. Feldman and Ballard (1982)
15
Graceful Degradation damage performance
16
Flexibility: the Necker cube
17
vision = constraint satisfaction
18
And sometimes plain search…
19
Adaptivitiy processing implies learning in biological computers versus processing does not imply learning in digital computers
20
Context-sensitivity: patterns emergent properties
21
Robustness and context-sensitivity coping with noise
22
The neural computer Is it possible to develop a model after the natural example?Is it possible to develop a model after the natural example? Brain-inspired models:Brain-inspired models: models based on a restricted set of structural en functional properties of the (human) brainmodels based on a restricted set of structural en functional properties of the (human) brain
23
The Neural Computer (structure)
24
Neurons, the building blocks of the brain
26
Neural activity in out
27
Synapses, the basis of learning and memory
28
Learning: Hebb’s rule neuron 1synapseneuron 2
29
Forgetting in neural networks
30
Towards neural networks
31
Connectivity An example: The visual system is a feedforward hierarchy of neural modules Every module is (to a certain extent) responsible for a certain function
32
(Artificial) Neural Networks NeuronsNeurons activityactivity nonlinear input-output functionnonlinear input-output function ConnectionsConnections weightweight LearningLearning supervisedsupervised unsupervisedunsupervised
33
Artificial Neurons input (vectors) input (vectors) summation (excitation) summation (excitation) output (activation) output (activation) i
34
Input-output function nonlinear function: nonlinear function: e f(e) f(x) = 1 + e -x/a 1 a 0 a
35
Artificial Connections (Synapses) w AB w AB The weight of the connection from neuron A to neuron BThe weight of the connection from neuron A to neuron B AB w AB
36
The Perceptron
37
Learning in the Perceptron Delta learning rule Delta learning rule the difference between the desired output t and the actual output o, given input xthe difference between the desired output t and the actual output o, given input x Global error E Global error E is a function of the differences between the desired and actual outputsis a function of the differences between the desired and actual outputs
38
Gradient Descent
39
Linear decision boundaries
40
Minsky and Papert’s connectedness argument
41
The history of the Perceptron Rosenblatt (1959) Rosenblatt (1959) Minsky & Papert (1961) Minsky & Papert (1961) Rumelhart & McClelland (1986) Rumelhart & McClelland (1986)
42
The multilayer perceptron input one or more hidden layers output
43
Training the MLP supervised learning supervised learning each training pattern: input + desired outputeach training pattern: input + desired output in each epoch: present all patternsin each epoch: present all patterns at each presentation: adapt weightsat each presentation: adapt weights after many epochs convergence to a local minimumafter many epochs convergence to a local minimum
44
phoneme recognition with a MLP input: frequencies Output: pronunciation
45
Non-linear decision boundaries
46
Compression with an MLP the autoencoder
47
hidden representation
48
Restricted Boltzmann machines (RBMs)
49
Learning in the MLP
52
Preventing Overfitting GENERALISATION = performance on test set GENERALISATION = performance on test set Early stopping Early stopping Training, Test, and Validation set Training, Test, and Validation set k-fold cross validation k-fold cross validation leaving-one-out procedureleaving-one-out procedure
53
Image Recognition with the MLP
55
Hidden Representations
56
Other Applications PracticalPractical OCROCR financial time seriesfinancial time series fraud detectionfraud detection process controlprocess control marketingmarketing speech recognitionspeech recognition TheoreticalTheoretical cognitive modelingcognitive modeling biological modelingbiological modeling
57
Some mathematics…
58
Perceptron
59
Derivation of the delta learning rule Target output Actual output h = i
60
MLP
61
Sigmoid function May also be the tanh functionMay also be the tanh function ( instead of )( instead of ) Derivative f’(x) = f(x) [1 – f(x)]Derivative f’(x) = f(x) [1 – f(x)]
62
Derivation generalized delta rule
63
Error function (LMS)
64
Adaptation hidden-output weights
65
Adaptation input-hidden weights
66
Forward and Backward Propagation
67
Decision boundaries of Perceptrons Straight lines (surfaces), linear separable
68
Decision boundaries of MLPs Convex areas (open or closed)
69
Decision boundaries of MLPs Combinations of convex areas
70
Learning and representing similarity
71
Alternative conception of neurons Neurons do not take the weighted sum of their inputs (as in the perceptron), but measure the similarity of the weight vector to the input vector Neurons do not take the weighted sum of their inputs (as in the perceptron), but measure the similarity of the weight vector to the input vector The activation of the neuron is a measure of similarity. The more similar the weight is to the input, the higher the activation The activation of the neuron is a measure of similarity. The more similar the weight is to the input, the higher the activation Neurons represent “prototypes” Neurons represent “prototypes”
72
Course Coding
73
2nd order isomorphism
74
Prototypes for preprocessing
75
Kohonen’s SOFM (Self Organizing Feature Map) Unsupervised learning Unsupervised learning Competitive learning Competitive learning output input (n-dimensional) winner
76
Competitive learning Determine the winner (the neuron of which the weight vector has the smallest distance to the input vector) Determine the winner (the neuron of which the weight vector has the smallest distance to the input vector) Move the weight vector w of the winning neuron towards the input i Move the weight vector w of the winning neuron towards the input i Before learning i w After learning i w
77
Kohonen’s idea Impose a topological order onto the competitive neurons (e.g., rectangular map) Impose a topological order onto the competitive neurons (e.g., rectangular map) Let neighbours of the winner share the “prize” (The “postcode lottery” principle.) Let neighbours of the winner share the “prize” (The “postcode lottery” principle.) After learning, neurons with similar weights tend to cluster on the map After learning, neurons with similar weights tend to cluster on the map
78
Biological inspiration
79
Topological order neighbourhoods SquareSquare winner (red)winner (red) Nearest neighboursNearest neighbours HexagonalHexagonal Winner (red)Winner (red) Nearest neighboursNearest neighbours
80
inputs Outputs (map)
82
A simple example A topological map of 2 x 3 neurons and two inputs A topological map of 2 x 3 neurons and two inputs 2D input input weights visualisation
83
Weights before training
84
Input patterns (note the 2D distribution)
85
Weights after training
86
Another example Input: uniformly randomly distributed pointsInput: uniformly randomly distributed points Output: Map of 20 2 neuronsOutput: Map of 20 2 neurons TrainingTraining Starting with a large learning rate and neighbourhood size, both are gradually decreased to facilitate convergenceStarting with a large learning rate and neighbourhood size, both are gradually decreased to facilitate convergence
87
Weights visualisation
88
Dimension reduction 3D input 2D output
89
Adaptive resolution 2D input 2D output
90
Output map representation
91
Application of SOFM Examples (input)SOFM after training (output)
92
Visual features (biologically plausible)
93
Face Classification
94
Colour classification
95
Car classification
96
Principal Components Analysis (PCA) Principal Components Analysis (PCA) pca1 pca2 pca1 pca2 Projections of data Relation with statistical methods 1
97
Relation with statistical methods 2 Multi-Dimensional Scaling (MDS) Multi-Dimensional Scaling (MDS) Sammon Mapping Sammon Mapping Distances in high- dimensional space
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.