Download presentation
Presentation is loading. Please wait.
Published byDavid Elliott Modified over 9 years ago
1
Acids and Bases Chapter 15
2
Acids Have a sour taste. Vinegar owes its taste to acetic acid. Citrus fruits contain citric acid. React with certain metals to produce hydrogen gas. React with carbonates and bicarbonates to produce carbon dioxide gas Have a bitter taste. Feel slippery. Many soaps contain bases. Bases 4.3
3
Arrhenius acid is a substance that produces H + (H 3 O + ) in water A Brønsted-Lowry acid is a proton donor A Lewis acid is a substance that can accept a pair of electrons A Lewis base is a substance that can donate a pair of electrons Definition of An Acid H+H+ H O H + OH - acidbase N H H H H+H+ + acidbase 15.12 N H H H H +
4
Arrhenius acid is a substance that produces H + (H 3 O + ) in water Arrhenius base is a substance that produces OH - in water 4.3
5
A Brønsted acid is a proton donor A Brønsted base is a proton acceptor acidbaseacidbase 15.1 acid conjugate base base conjugate acid
6
O H H+ O H H O H HH O H - + [] + Acid-Base Properties of Water H 2 O (l) H + (aq) + OH - (aq) H 2 O + H 2 O H 3 O + + OH - acid conjugate base base conjugate acid 15.2 autoionization of water
7
Lewis Acids and Bases N H H H acidbase F B F F + F F N H H H No protons donated or accepted! 15.12
8
H 2 O (l) H + (aq) + OH - (aq) The Ion Product of Water K c = [H + ][OH - ] [H 2 O] [H 2 O] = constant K c [H 2 O] = K w = [H + ][OH - ] The ion-product constant (K w ) is the product of the molar concentrations of H + and OH - ions at a particular temperature. At 25 0 C K w = [H + ][OH - ] = 1.0 x 10 - 14 [H + ] = [OH - ] [H + ] > [OH - ] [H + ] < [OH - ] Solution Is neutral acidic basic 15.2
9
pH – A Measure of Acidity pH = - log [H + ] [H + ] = [OH - ] [H + ] > [OH - ] [H + ] < [OH - ] Solution Is neutral acidic basic [H + ] = 1 x 10 -7 [H + ] > 1 x 10 -7 [H + ] < 1 x 10 -7 pH = 7 pH < 7 pH > 7 At 25 0 C pH[H + ] 15.3
10
pOH = -log [OH - ] [H + ][OH - ] = K w = 1.0 x 10 -14 -log [H + ] – log [OH - ] = 14.00 pH + pOH = 14.00
11
The pH of rainwater collected in a certain region of the northeastern United States on a particular day was 4.82. What is the H + ion concentration of the rainwater? pH = - log [H + ] [H + ] = 10 -pH = 10 -4.82 = 1.5 x 10 -5 M The OH - ion concentration of a blood sample is 2.5 x 10 -7 M. What is the pH of the blood? pH + pOH = 14.00 pOH = -log [OH - ]= -log (2.5 x 10 -7 )= 6.60 pH = 14.00 – pOH = 14.00 – 6.60 = 7.40 15.3
12
Strong Electrolyte – 100% dissociation NaCl (s) Na + (aq) + Cl - (aq) H2OH2O Weak Electrolyte – not completely dissociated CH 3 COOH CH 3 COO - (aq) + H + (aq) Strong Acids are strong electrolytes HCl (aq) + H 2 O (l) H 3 O + (aq) + Cl - (aq) HNO 3 (aq) + H 2 O (l) H 3 O + (aq) + NO 3 - (aq) HClO 4 (aq) + H 2 O (l) H 3 O + (aq) + ClO 4 - (aq) H 2 SO 4 (aq) + H 2 O (l) H 3 O + (aq) + HSO 4 - (aq) 15.4
13
HF (aq) + H 2 O (l) H 3 O + (aq) + F - (aq) Weak Acids are weak electrolytes HNO 2 (aq) + H 2 O (l) H 3 O + (aq) + NO 2 - (aq) HSO 4 - (aq) + H 2 O (l) H 3 O + (aq) + SO 4 2- (aq) H 2 O (l) + H 2 O (l) H 3 O + (aq) + OH - (aq) Strong Bases are strong electrolytes – group I metal hydroxides plus barium hydroxide. NaOH (s) Na + (aq) + OH - (aq) H2OH2O KOH (s) K + (aq) + OH - (aq) H2OH2O Ba(OH) 2 (s) Ba 2+ (aq) + 2OH - (aq) H2OH2O 15.4
14
F - (aq) + H 2 O (l) OH - (aq) + HF (aq) Weak Bases are weak electrolytes NO 2 - (aq) + H 2 O (l) OH - (aq) + HNO 2 (aq) Conjugate acid-base pairs: The conjugate base of a strong acid has no measurable strength. H 3 O + is the strongest acid that can exist in aqueous solution. The OH - ion is the strongest base that can exist in aqueous solution. 15.4
15
Strong AcidWeak Acid 15.4
16
What is the pH of a 2 x 10 -3 M HNO 3 solution? HNO 3 is a strong acid – 100% dissociation. HNO 3 (aq) + H 2 O (l) H 3 O + (aq) + NO 3 - (aq) pH = -log [H + ] = -log [H 3 O + ] = -log(0.002) = 2.7 Start End 0.002 M 0.0 M What is the pH of a 1.8 x 10 -2 M Ba(OH) 2 solution? Ba(OH) 2 is a strong base – 100% dissociation. Ba(OH) 2 (s) Ba 2+ (aq) + 2OH - (aq) Start End 0.018 M 0.036 M0.0 M pH = 14.00 – pOH = 14.00 + log(0.036) = 12.6 15.4
17
HA (aq) + H 2 O (l) H 3 O + (aq) + A - (aq) Weak Acids (HA) and Acid Ionization Constants HA (aq) H + (aq) + A - (aq) K a = [H + ][A - ] [HA] K a is the acid ionization constant KaKa weak acid strength 15.5
18
percent ionization = Ionized acid concentration at equilibrium Initial concentration of acid x 100% For a monoprotic acid HA Percent ionization = [H + ] [HA] 0 x 100% [HA] 0 = initial concentration 15.5
19
15.4
20
15.5
21
Solving weak acid ionization problems: 1.Identify the major species that can affect the pH. In most cases, you can ignore the autoionization of water. Ignore [OH - ] because it is determined by [H + ]. 2.Use ICE to express the equilibrium concentrations in terms of single unknown x. 3.Write K a in terms of equilibrium concentrations. Solve for x by the approximation method. If approximation is not valid, solve for x exactly. 4.Calculate concentrations of all species and/or pH of the solution. 15.5
22
What is the pH of a 0.50 M HF solution (at 25 0 C)? HF (aq) H + (aq) + F - (aq) K a = [H + ][F - ] [HF] = 7.1 x 10 -4 HF (aq) H + (aq) + F - (aq) Initial (M) Change (M) Equilibrium (M) 0.500.00 -x-x+x+x 0.50 - x 0.00 +x+x xx K a = x2x2 0.50 - x = 7.1 x 10 -4 Ka Ka x2x2 0.50 = 7.1 x 10 -4 0.50 – x 0.50 K a << 1 x 2 = 3.55 x 10 -4 x = 0.019 M [H + ] = [F - ] = 0.019 M pH = -log [H + ] = 1.72 [HF] = 0.50 – x = 0.48 M 15.5
23
When can I use the approximation? 0.50 – x 0.50 K a << 1 When x is less than 5% of the value from which it is subtracted. x = 0.019 0.019 M 0.50 M x 100% = 3.8% Less than 5% Approximation ok. What is the pH of a 0.05 M HF solution (at 25 0 C)? Ka Ka x2x2 0.05 = 7.1 x 10 -4 x = 0.006 M 0.006 M 0.05 M x 100% = 12% More than 5% Approximation not ok. Must solve for x exactly using quadratic equation or method of successive approximation. 15.5
24
What is the pH of a 0.122 M monoprotic acid whose K a is 5.7 x 10 -4 ? HA (aq) H + (aq) + A - (aq) Initial (M) Change (M) Equilibrium (M) 0.1220.00 -x-x+x+x 0.122 - x 0.00 +x+x xx K a = x2x2 0.122 - x = 5.7 x 10 -4 Ka Ka x2x2 0.122 = 5.7 x 10 -4 0.122 – x 0.122 K a << 1 x 2 = 6.95 x 10 -5 x = 0.0083 M 0.0083 M 0.122 M x 100% = 6.8% More than 5% Approximation not ok. 15.5
25
K a = x2x2 0.122 - x = 5.7 x 10 -4 x 2 + 0.00057x – 6.95 x 10 -5 = 0 ax 2 + bx + c =0 -b ± b 2 – 4ac 2a2a x = x = 0.0081x = - 0.0081 HA (aq) H + (aq) + A - (aq) Initial (M) Change (M) Equilibrium (M) 0.1220.00 -x-x+x+x 0.122 - x 0.00 +x+x xx [H + ] = x = 0.0081 M pH = -log[H + ] = 2.09 15.5
26
NH 3 (aq) + H 2 O (l) NH 4 + (aq) + OH - (aq) Weak Bases and Base Ionization Constants K b = [NH 4 + ][OH - ] [NH 3 ] K b is the base ionization constant KbKb weak base strength 15.6 Solve weak base problems like weak acids except solve for [OH-] instead of [H + ].
27
15.6
28
15.7 Ionization Constants of Conjugate Acid-Base Pairs HA (aq) H + (aq) + A - (aq) A - (aq) + H 2 O (l) OH - (aq) + HA (aq) KaKa KbKb H 2 O (l) H + (aq) + OH - (aq) KwKw K a K b = K w Weak Acid and Its Conjugate Base Ka =Ka = KwKw KbKb Kb =Kb = KwKw KaKa
29
15.8
30
Acid-Base Properties of Salts Neutral Solutions: Salts containing an alkali metal or alkaline earth metal ion (except Be 2+ ) and the conjugate base of a strong acid (e.g. Cl -, Br -, and NO 3 - ). NaCl (s) Na + (aq) + Cl - (aq) H2OH2O Basic Solutions: Salts derived from a strong base and a weak acid. NaCH 3 COO (s) Na + (aq) + CH 3 COO - (aq) H2OH2O CH 3 COO - (aq) + H 2 O (l) CH 3 COOH (aq) + OH - (aq) 15.10
31
Acid-Base Properties of Salts Acid Solutions: Salts derived from a strong acid and a weak base. NH 4 Cl (s) NH 4 + (aq) + Cl - (aq) H2OH2O NH 4 + (aq) NH 3 (aq) + H + (aq) Salts with small, highly charged metal cations (e.g. Al 3+, Cr 3+, and Be 2+ ) and the conjugate base of a strong acid. Al(H 2 O) 6 (aq) Al(OH)(H 2 O) 5 (aq) + H + (aq) 3+2+ 15.10
32
Acid Hydrolysis of Al 3+ 15.10
33
Acid-Base Properties of Salts Solutions in which both the cation and the anion hydrolyze: K b for the anion > K a for the cation, solution will be basic K b for the anion < K a for the cation, solution will be acidic K b for the anion K a for the cation, solution will be neutral 15.10
34
A buffer solution is a solution of: 1.A weak acid or a weak base and 2.The salt of the weak acid or weak base Both must be present! A buffer solution has the ability to resist changes in pH upon the addition of small amounts of either acid or base. 16.3 Add strong acid H + (aq) + CH 3 COO - (aq) CH 3 COOH (aq) Add strong base OH - (aq) + CH 3 COOH (aq) CH 3 COO - (aq) + H 2 O (l) Consider an equal molar mixture of CH 3 COOH and CH 3 COONa
35
Which of the following are buffer systems? (a) KF/HF (b) KBr/HBr, (c) Na 2 CO 3 /NaHCO 3 (a) HF is a weak acid and F - is its conjugate base buffer solution (b) HBr is a strong acid not a buffer solution (c) CO 3 2- is a weak base and HCO 3 - is its conjugate acid buffer solution 16.3
36
Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete. Equivalence point – the point at which the reaction is complete Indicator – substance that changes color at (or near) the equivalence point Slowly add base to unknown acid UNTIL The indicator changes color (pink) 4.7
37
37 Titration Curves A graph showing pH vs volume of acid or base added The pH shows a sudden change near the equivalence point The Equivalence point is the point at which the moles of OH- are equal to the moles of H 3 O +
38
Strong Acid-Strong Base Titrations NaOH (aq) + HCl (aq) H 2 O (l) + NaCl (aq) OH - (aq) + H + (aq) H 2 O (l) 16.4
39
39 Strong acid-strong base Titration Curve At equivalence point, V eq : Moles of H 3 O + = Moles of OH - There is a sharp rise in the pH as one approaches the equivalence point With a strong acid and a strong base, the equivalence point is at pH =7 Neither the conjugate base or conjugate acid is strong enough to affect the pH pH cm 3 base added
40
Weak Acid-Strong Base Titrations CH 3 COOH (aq) + NaOH (aq) CH 3 COONa (aq) + H 2 O (l) CH 3 COOH (aq) + OH - (aq) CH 3 COO - (aq) + H 2 O (l) CH 3 COO - (aq) + H 2 O (l) OH - (aq) + CH 3 COOH (aq) At equivalence point (pH > 7): 16.4
41
41 Weak acid-strong base Titration Curve The increase in pH is more gradual as one approaches the equivalence point (buffer region) With a weak acid and a strong base, the equivalence point is higher than pH = 7 The strength of the conjugate base of the weak acid is strong enough to affect the pH of the equivalence point
42
Strong Acid-Weak Base Titrations HCl (aq) + NH 3 (aq) NH 4 Cl (aq) NH 4 + (aq) + H 2 O (l) NH 3 (aq) + H 3 O + (aq) At equivalence point (pH < 7): 16.4 H + (aq) + NH 3 (aq) NH 4 + (aq)
43
43 Polyprotic Weak Acids Polyprotic acids have more than one hydrogen that can be neutralized Phosphoric Acid has three hydrogen ions. H 3 PO 4 + H 2 O H 3 O + + H 2 PO 4 - H 2 PO 4 - +H 2 O H 3 O + + HPO 4 2- HPO 4 2- +H 2 O H 3 O + + PO 4 3- At given pH only one acid form and one conjugate base predominate pH 0-4.7: H 3 PO 4 and H 2 PO 4 - pH 4.7-9.7: H 2 PO 4 - and HPO 4 2- pH 9.7-14: HPO 4 2- and PO 4 3-
44
44 Polyprotic Weak Acid-Strong Base Titration Curve Phosphoric Acid has three hydrogen ions. There are three equivalence points H 3 P0 4 + H 2 O H 3 O + + H 2 PO 4 - H 2 PO 4 - +H 2 O H 3 O + + HPO 4 2- HPO 4 2- +H 2 O H 3 O + + PO 4 3-
45
Acid-Base Indicators HIn (aq) H + (aq) + In - (aq) 10 [HIn] [In - ] Color of acid (HIn) predominates 10 [HIn] [In - ] Color of conjugate base (In - ) predominates 16.5
46
The titration curve of a strong acid with a strong base. 16.5
47
47 Indicators
48
Which indicator(s) would you use for a titration of HNO 2 with KOH ? Weak acid titrated with strong base. At equivalence point, will have conjugate base of weak acid. At equivalence point, pH > 7 Use cresol red or phenolphthalein 16.5
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.