Download presentation
Presentation is loading. Please wait.
Published byDeborah Welch Modified over 9 years ago
1
Exploratory Data Analysis
2
Height and Weight
3
1.Data checking, identifying problems and characteristics Data exploration and Statistical analysis
4
Data Data exploration, categorical / numerical outcomes
5
Look at the data (initial checks on the data) Downloading data, formatting, data collection, discrepant data, missing data Visualize the data (exploratory data analysis) Descriptive statistics, informative tables, well- constructed figures Analyse the data (definitive analysis) Formal statistical analysis Quantify any interesting results Report the findings Analyzing a set of data
6
Often, test to use depends on the type of variable at hand Two main classes of variables: Categorical Numerical Categorical variables further divided into two sub-classes: Nominal categorical (example: gender, ethnic groups) Ordinal categorical (example: size of a car, quality of teaching) Types of Variables
7
Distinguish between discrete or continuous numerical variables Discrete Integer values (number of male subjects, number of episodes of flu outbreaks) Continuous Takes a whole range of values (height, weight) Continuous variables treated as discrete (age) Numerical variables
8
Exploratory Data Analysis
9
EDA Tabular EDA Univariate tables, cross-tabulation of categorical variables Numerical EDA Location, spread, skewness, covariance and correlation Graphical EDA Frequency plots, histograms, boxplots, scatterplots The precise form of EDA depends on the data at hand.
10
Tabular EDA Useful for summarising categorical data. For example, the following table shows the classification of 2,555 students from three schools in a study on the GCSE O-level results in Mathematics: Dunman High HCI RI / RGS Total No. of students Dunman High HCI RI / RGS Total No. of students 6 408 1496 1910 Small counts are problematic in categorical data analysis
11
Tabular EDA For two categorical variables: i.e. the distribution of the A, B and others grades between two schools Question: Appears that Dunman High has proportionally more students scoring A/B grades than HCI. Does this mean anything? Dunman High HCI School A B Others
12
Numerical EDA Calculating informative numbers which summarise the dataset What are the numbers useful for describing the age of 1,059 individuals with diabetes? 20 30 40 50 60 70 80 AGE Location parameters (mean, median, mode) Mean age (54.6 years) Spread (range, standard deviation, interquartile range) Skewness
13
Numerical EDA Mean Median
14
Normal distribution Exam marks for Mathematics exam 40 50 60 70 80 68% of the probability, 1 standard deviation away 95% of the probability, 2 SDs away
15
Sample Quartiles Q 1 : 25 th quantile (or value of the 25% ranked data) Q 2 : 50 th quantile (also known as median of data) Q 3 : 75 th quantile (or value of the 75% ranked data) Consider the heights of 1000 people, rank these heights from shortest to tallest. Numerical EDA Q1Q1 Q2Q2 Q3Q3
16
When mean is used as the location parameter, the standard deviation is the appropriate measure for spread When median is used as the location parameter, the corresponding measure for spread is the interquartile range Interquartile range (IQR) IQR = Q 3 – Q 1 Minimum, Maximum of data (seldom used to quantify spread, but more for data QC) Location and spread
17
Numerical EDA Numbers can be informative to identify potential problems with the data Example: Suppose the height for 1,496 individuals randomly sampled from the population produces the following summary IQR = Q3 – Q1 = 188 – 172 = 16 Range = Max – Min = 201 – 0 = 201
18
Correlation Two numerical variables: height and weight Questions Are there any relationship between these variables? If there is, how do we quantify this relationship? Covariance and Correlation Measures the degree of association between two numerical variables.
19
Covariance and Correlation Covariance is scale-dependent, and correlation is unit- free. More intuitive to interpret correlation than covariance. Example: Covariance for height and weight is 2.4 when assessed using metres and kilograms, but 240,000 when assessed using centimetres and grams. Correlation is a constant value at 0.83 for both scenario. Correlation is unit-free, and always bounded between -1 and 1 inclusive. Useful for investigating relationships between variables, (e.g. weight and height)
20
Example
21
Graphical EDA Visual summaries of the data Flagging outliers, obvious relationships, check for distribution
22
Boxplots Univariate boxplot: for 1 numerical variable Ends of box: Q 1 and Q 3 Length of box: IQR White line: Sample median Whiskers: 1.5 times IQR Lines outside whiskers: Outliers Circles: Extreme outliers
23
Boxplots Multivariate boxplots: for 1 numerical variable across different levels of a categorical variable Graphical comparison
24
Scatterplots Graphical representation for 2 numerical variables
25
Scatterplots
27
Exploratory Data Analysis in RExcel and SPSS
28
Comparing height of children Height data for 30 children, from 3 groups Interest to compare height of children between groups Useful (and not useful!) data exploration
36
Comparing height of children Height data for 30 children, from 3 groups Interest to compare height of children between groups Useful (and not useful!) data exploration
37
Coding numerical variables as factors Retain numbers as categories, or to define new names for the categories Note the deliberate mistake here! Always know your variables well!
38
Stratified analysis by group Click on this to define the variable that contains the grouping information for stratification
40
Boxplots Choose this to produce separate boxplots for the three groups (stratified analysis)
41
Minimum Maximum Median 1 st quartile 2 nd quartile Interquartile range 25%
42
An excellent way to observe graphical/preliminary evidence of any differences between the groups! No comments can be made if the boxes overlap. Only when two boxes (or more) do not overlap can we say there is graphical evidence of a difference between the two (or more) groups
43
What about SPSS?
50
Never choose this when plotting a histogram to get a gauge of the distribution of the dataset
54
To perform a stratified analysis, place the grouping variable under Factor List
55
Default is Stem-and-leaf, remember to change it to Histogram Check this to perform a quantitative test for normality
57
Numerical summaries
59
Statistical test for departure from normality Statistical evidence, known as significance levels or P-values For the time being: - If values are > 0.05, interpret as normality assumption is valid; - If values are < 0.05, interpret as normality assumption is not valid, and the variable does not follow a normal distribution.
60
There really isn’t much difference between RExcel and SPSS
61
Data checking
62
Omega 3 consumption and mathematical abilities Students from 3 schools participated in a study to assess the effects of omega 3 on mathematical abilities For each student, there is information on: school gender marks before marks after daily omega 3 consumption (mg)
63
Zeroes are important to take note of, but how do we decide whether they are plausible values or problematic values?
65
For flagging outliers in boxplots Now we need to exclude these datapoints
70
realise that data exploration prior to formal statistical analysis is important; know what to look out for in data checking of categorical variables know what to look out for in data checking of numerical variables understand the use of frequencies (percentages) for categorical data summary understand which location and variability metrics to use for numerical data understand the use and interpretation of histograms Students should be able to
71
interpret boxplots, for variable summary and for graphical comparisons know the usage and interpretation of scatterplots perform data entry in RExcel and SPSS perform exploratory data analysis in RExcel and SPSS identify and remove problematic data in RExcel and SPSS generate useful summary tables and figures for a dataset in investigating research hypotheses interpret generated summary tables and figures of a dataset for investigating research hypotheses Cont...
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.