Download presentation
Presentation is loading. Please wait.
Published byBeatrice Sherilyn Hicks Modified over 9 years ago
1
Vlachopoulos Georgios Lecturer of Computer Science and Informatics Technological Institute of Patras, Department of Optometry, Branch of Egion Lecturer of Biostatistics Technological Institute of Patras, Department of Physiotherapy, Branch of Egion Matrices in Matlab
2
Vlachopoulos Georgios Matlab (Matrix Laboratory) ◦ A powerful tool to handle Matrices
3
Vlachopoulos Georgios A=[2,4,7] B=[1:1:10] C=[10:3:40] D=[30:-3:0] D1=[1:pi:100] Length(D1) D2=linspace(2,10,20)
4
E=[1,2,3↲ 4,5,6] F=[1,2,3;4,5,6] G=[1;2;3] H=[1,2,3; 4,5] Vlachopoulos Georgios
5
X=2; H=[x,sin(pi/4), 3,2*x; sqrt(5), x^2,log(x),4] H1=[x,sin(pi/4), 3,2*x; sqrt(5), x^2,log(x),4; linspace(1,2,4)] Vlachopoulos Georgios
6
Special functions zeros(2,4) zeros(2,2) zeros(2) ones(2,4) ones(2,2) ones(2) eye(2,2) eye(2) eye(2,4) Vlachopoulos Georgios
7
Special functions rand (2,4) rand(2,2) rand(2) magic(3) hilb(3) Vlachopoulos Georgios
8
+ - * / \ .* ./ .\ ^ (base and exp) inv size Vlachopoulos Georgios
9
Inner Product ◦ dot(array1,array2) Cross Product ◦ cross(array1,array2) Vlachopoulos Georgios
10
Every polynomial corresponds to an array with elements the coefficients of the polynomial Example f1(x)=x 2 -5x+6 f1=[1,-5,6] f2(x)=x3-5x+6 f2=[1,0,-5,6] Vlachopoulos Georgios
11
Add polynomials ◦ array1+array2 ◦ If we have different order polynomials we create equal sizes arrays adding zeros on missing coefficients Add polynomials ◦ array1-array2 ◦ If we have different order polynomials we create equal sizes arrays adding zeros on missing coefficients Multiply polynomials ◦ conv(array1,array2) Divide polynomials ◦ deconv(array1,array2) Vlachopoulos Georgios
12
Roots of a polynomial roots(array) Polynomial with roots the elements of the array poly(array) First order derivative of the Polynomial polyder(array) Value of the Polynomial p for x=a polyval(p,a) Vlachopoulos Georgios
13
Examples k1=root(f1) k2=root(f2) poly(k1) kder=polyder(f2) polyval(s2,5) Vlachopoulos Georgios
14
A∪B union(array1,array2) A∩B intersect(array1,array2) A∼B setdiff(array1,array2) Example ◦ a=1:6 ◦ b=0:2:10 ◦ c=union(a,b) ◦ d=intersect(a,b) ◦ e1=setdiff(a,b) ◦ e2=setdiff(b,a) Vlachopoulos Georgios
15
Unique Elements unique(array) Elements of A that are members of B ismember(array1,array2) Example ◦ f1=ismember(a,b) ◦ f2=ismember(b,a) ◦ g=[1,1,2,2,3,3] ◦ h=unique(g) Vlachopoulos Georgios
16
Arrays ◦ Sum of array elements sum(array) ◦ Product of array elements prod(array) ◦ Cumulative sum of an array elements cumsum(array) ◦ Cumulative prod of an array elements cumprod(array) Vlachopoulos Georgios
17
Matrices ◦ Sum of elements of each matrix column sum(matrix) or sum(matrix,1) ◦ Sum of elements of each matrix row sum(matrix,2) Overall sum???? Vlachopoulos Georgios
18
Matrices ◦ Product of elements of each matrix column prod(matrix) or prod(matrix,1) ◦ Product of elements of each matrix row prod(matrix,2) Overall product???? Vlachopoulos Georgios
19
Matrices ◦ Cumulative sum per column cumsum(matrix) or cumsum (matrix,1) ◦ Cumulative sum per row cumsum (matrix,2) Vlachopoulos Georgios
20
Matrices ◦ Cumulative sum per column cumprod(matrix) or cumprod (matrix,1) ◦ Cumulative sum per row cumprod(matrix,2) Vlachopoulos Georgios
21
Matrix element A(i,j) Example: A=[1,2,3;4,5,6] A(2,1)↲ A(2,1)=4 Vlachopoulos Georgios
22
Example: A=[1,2,3;4,5,6;3,2,1] B=A(1:2,2,3) y=A(:,1) Z=A(1,:) W=A([2,3],[1,3]) A(:) Vlachopoulos Georgios
23
Delete elements Example ◦ Clear all; ◦ A=magic(5) ◦ A(2,: )=[] % delete second row ◦ A(:[1,4])=[] % delete columns 1 and 4 ◦ A=magic(5) ◦ A(1:3,:)=[] % delete rows 1 to 3 Vlachopoulos Georgios
24
Replace Elements Example ◦ Clear all; ◦ A=magic(5) ◦ A(2,3 )=5 % Replace Element (2,3) ◦ A(3,:)=[12,13,14,15,16] % replace 3 rd row ◦ A([2,5]=[22,23,24,25,26; 32,33,34,35,36] Vlachopoulos Georgios
25
Insert Elements Example ◦ Clear all; ◦ A=magic(5) ◦ A(6,:)=[1,2,3,4,5,6] ◦ A(9,:)=[11,12,13,14,15,16] Vlachopoulos Georgios
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.