Download presentation
Presentation is loading. Please wait.
Published byCecilia Watts Modified over 9 years ago
1
This teaching material is a part of e-Photon/ONe Master study in Optical Communications and Networks Course and module: Author(s): No part of this presentation can be reused without the permission of author(s). Users are requested to ask for permission by specifying the purpose of the usage. http://www.e-photon- one.org Photonics in Switching Optical components Lena Wosinska, Bo Willen Royal Institute of Technology KTH Lena.Wosinska@imit.kth.se
2
Revision: date2 ( ) Optical Components Couplers Isolators and Circulators Filters Multiplexers and Demultiplexers Amplifiers Transmitters and Receivers Switches Wavelength converters
3
Revision: date3 ( ) Couplers α 1-α
4
Revision: date4 ( ) Couplers
5
Revision: date5 ( ) Couplers Key parameters Excess loss α(ℓ)-variations Wavelength dependence Polarisation dependence
6
Revision: date6 ( ) Couplers
7
Revision: date7 ( ) Couplers
8
Revision: date8 ( ) Isolators and circulators Need: Avoid backward travelling waves, sometimes detrimental for laser performance. Problems: Expensive and bulky One of the remaining problems in optical networks: Small, integrated devices are needed, Magnetic fields required since we are dealing with non-reciprocal devices.
9
Revision: date9 ( ) Isolators and circulators
10
Revision: date10 ( ) Isolators and circulators
11
Revision: date11 ( ) Isolators and Circulators Nonreciprocal Key parameters Insertion loss ~ 1 dB Isolation ~ 40-50 dB
12
Revision: date12 ( ) Isolators Two polarisation modes: Vertical and horisontal. Principle of operation
13
Revision: date13 ( ) Isolator
14
Revision: date14 ( ) Polarisation independent
15
Revision: date15 ( ) Isolator Polarisation independent
16
Revision: date16 ( ) Multiplexers and Filters
17
Revision: date17 ( ) Filters Key parameters Insertion loss State of polarisation dependence Temperature coefficient Passband flatness Crosstalk suppression Cost
18
Revision: date18 ( ) Gratings Bulk, fiber, waveguide… Grating equation a ii dd Imaging plane
19
Revision: date19 ( ) Blazed Gratings α = blaze angel
20
Revision: date20 ( ) Stimax Grating
21
Revision: date21 ( ) Bragg Gratings Fiber gratings Long period fiber gratings Waveguide gratings
22
Revision: date22 ( ) Bragg Gratings Bragg phase-matching condition: Bragg wavelength:
23
Revision: date23 ( ) Bragg gratings
24
Revision: date24 ( ) Fiber Bragg Gratings Low loss Low crosstalk Ease of coupling Polarization insensitive Low temperature coefficient Simple packaging The index of refraction increases in UV-light. Short-period ~ 0.5 µm Long-period ~ 100 µm
25
Revision: date25 ( ) Long-period Fiber Grating
26
Revision: date26 ( ) A Bragg grating directional coupler OADM 1 Spatial separation of drop No losses for add channel
27
Revision: date27 ( ) Bragg grating OADM
28
Revision: date28 ( ) Fabry-Perot Filters Mirrors
29
Revision: date29 ( ) Cavity A resonant multi-cavity thin-film filter. Glass substrate Thin-Film Filters Dielectric reflectors
30
Revision: date30 ( ) Multilayer dielectric thin film filters Key parameters: Flat top of the passband Sharp skirts Temperature insensitive Low loss Polarisation insensitive
31
Revision: date31 ( ) Semiconductor Waveguides
32
Revision: date32 ( ) Mach-Zehnder Interferometer Non-linear element varying the time delay.
33
Revision: date33 ( ) Mach Zehnder Interferometer Add/drop function L. Wosinski, M. Swillo and M. Dainese, “Imprinting of low dispersion Bragg gratings in planar devices for 40 Gbps DWDM systems”, Proc. of International Congress on Optics and Optoelectronics, Warsaw, Poland 28 August - 2 September 2005, Proc. SPIE 5956, pp OD1 – OD8.
34
Revision: date34 ( ) AWG or Phasar Number of channels Central frequency Channel spacing Bandwidth Insertion loss Crosstalk Polarisation dependence Temperature dependence
35
Revision: date35 ( ) Advanced devices by PECVD in silica-on-silicon State-of-the-art devices in PECVD technology are dense WDM MULTI/DEMULTIPLEXERS by Arrayed-Waveguide Grating (AWG) used to combine or divide narrowly spaced channels AWG configurationAWG fabrication Characteristics 32 output channels, 0.8 nm channel spacing (100 GHz), 25 nm band L. Wosinski,“ Silica-on-Silicon Technology for Photonic Integrated Devices”, 6th International Conference on Transparent Optical Networks, Wroclaw, Poland, Julyl 4 - 8, 2004, Proceedings of the IEEE, vol. 2, pp 274 - 279.
36
Revision: date36 ( ) Add/Drop multiplexer L. Wosinski, M. Dainese, H. Fernando and T. Augustsson, “Grating-assisted add-drop multiplexer realized in silica-on-silicon technology”, Proceedings of the Conference “Photonics Fabrication Europe”, Brugge, Belgium, 28 October, 1 November 2002, Proc. SPIE 4941, pp 43-50.
37
Revision: date37 ( ) AWG Cross Connect
38
Revision: date38 ( ) Amplifiers Regenerators Erbium-Doped Fibre Amplifiers Raman amplifiers Semiconductor Optical Amplifiers Clock recovery Scalability Analogue devices Noise accumulation Bandwidth Gain Flatness
39
Revision: date39 ( ) Optical Amplifiers Stimulated emission Spontaneous Emission Polarisation dependence Crosstalk Gain Noise Amplitude fluctuations Noise
40
Revision: date40 ( ) EDFA Gain flattening filters B- and C-band EDFA’s in parallel C-band: Higher Erbium doping or longer (Raman) C-band L-band 1530156516251610 S-band 1460
41
Revision: date41 ( ) EDFA Polarisation independent No crosstalk Wide wavelength range Transparent
42
Revision: date42 ( ) EDFA, Gain Flattening Fluoride doped fiber Filter Noise, pumped @ 1480 Power loss
43
Revision: date43 ( ) Raman. Nonlinear effects Phonon scattering Refractive index modulation Stimulated Raman Four-wave mixing
44
Revision: date44 ( ) Raman. Stokes wave Pump power lost to phonons Pump wavelength < Stokes wavelength Noise – backward pump Crosstalk
45
Revision: date45 ( ) Semiconductor Optical Amplifiers Transparent amplifier Wavelength converter Optical switch A forward biased p/n-junction AR-coating to avoid lasing
46
Revision: date46 ( ) Semiconductor Optical Amplifiers Bandwidth ~100 nm (1.3 – 1.55µm) Crosstalk Coupling loss Polarization dependence Noise High-quality AR-coating - FP
47
Revision: date47 ( ) Transmitters Lasers External Modulators (EA, MZI,...) High-frequency modulation Low chirp Light emitting diodes Low-frequency modulation Broad band Low power
48
Revision: date48 ( ) Lasers Output power Threshold current Slope efficiency Operation wavelength Spectral width Side-mode suppression Wavelength stability Dispersion FP-lasers DFB-lasers DBR-lasers External cavity VCSEL Tunable lasers Mode-locked lasers
49
Revision: date49 ( ) Detectors pin-diodes Avalanche diodes, APD msm-diodes Front-end amplifiers High-impedance Transimpedance Bandwidth Noise Dynamic range
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.