Download presentation
Presentation is loading. Please wait.
Published byLilian Craig Modified over 9 years ago
1
THE LHIRES-III SPECTROGRAPH © C2PU, Observatoire de la Cote d’Azur, Université de Nice Sophia-Antipolis Jean-Pierre Rivet CNRS, OCA, Dept. Lagrange jean-pierre.rivet@oca.eu
2
The LHIRES-III 05/09/2015C2PU-Team, Observatoire de Nice2 LHIRES = Littrow High RESolution spectrograph
3
Diffraction by 1 element 05/09/2015C2PU-Team, Observatoire de Nice3 Incident beam assumed parallel (wavelength ) Diffracted beam Collimator Screen ~ / d d Non-reflecting substrate Maximum in the direction of geometric optics: r = - r Angular width: ~ / d ii rr Reflecting element
4
Diffraction by “n” elements 05/09/2015C2PU-Team, Observatoire de Nice 4 Incident beam (wavelength ) Screen ? Non-reflecting substrate Reflecting elements Collimator ii
5
Diffraction by “n” elements 05/09/2015C2PU-Team, Observatoire de Nice5 Incident beam (wavelength ) ii Screen ? Collimator
6
Diffraction by “n” elements 05/09/2015C2PU-Team, Observatoire de Nice6 Screen Collimator NO LIGHT ! Diffracted beams out of phase : destructive interferences NO LIGHT
7
Diffraction by “n” elements 05/09/2015C2PU-Team, Observatoire de Nice7 Screen Collimator LIGHT ! Diffracted beams in phase : constructive interferences MAXIMUM LIGHT
8
Diffraction by “n” elements 05/09/2015C2PU-Team, Observatoire de Nice8 aaaa ii Ray 0 Ray 1 Delay of Ray 1 wrt Ray 0 = a sin( i )
9
Diffraction by “n” elements 05/09/2015C2PU-Team, Observatoire de Nice9 aaaa rr Ray 0 Ray 1 Delay of Ray 1 wrt Ray 0 = a sin( r )
10
Diffraction by “n” elements 05/09/2015C2PU-Team, Observatoire de Nice10 aaaa rr Ray 0 Ray 1 ii Ray 0 Ray 1 Total delay of Ray 1 wrt Ray 0 : = a sin( i ) + a sin( r ) Condition for constructive interferences: = k. integer; called the “order”
11
Diffraction by “n” elements 05/09/2015C2PU-Team, Observatoire de Nice11 aaaa rr Ray 0 ’ Ray 1 ’ ii Ray 0 Ray 1 Order k = 0 Condition for constructive interferences: = 0, whatever sin( i ) + sin( r ) = 0 Snell’s law ! direction of reflection on the grating’s plane according to geometric optics NON DISPERSIVE
12
Diffraction by “n” elements 05/09/2015C2PU-Team, Observatoire de Nice12 aaaa rr Ray 0 ’ Ray 1 ’ ii Ray 0 Ray 1 Order k ≠ 0 Condition for constructive interferences: = k. sin( i ) + sin( r ) = k. / a DISPERSIVE
13
Diffraction pattern (monochr.) 05/09/2015C2PU-Team, Observatoire de Nice13 sin( i ) + sin( r ) 0 Relative intensity aaaa N d ~ / ( N.a ) ~ / a ~ / d Diffraction enveloppe / a 2 / a 3 / a - / a -2 / a -3 / a
14
Diffraction pattern (polychr.) 05/09/2015C2PU-Team, Observatoire de Nice14 sin( i ) + sin( r ) 0 Relative intensity / a 2 / a 3 / a - / a -2 / a -3 / a Order 0: non dispersive Order 1: dispersive Order 2: more dispersive Order 3: even more dispersive
15
Blazed gratings 05/09/2015C2PU-Team, Observatoire de Nice 15 rr ii Diffraction envelope is maximum when: r = - i 0 th order is maximum when: r = - i rr ii Diffraction envelope is maximum when: r = - i 0 th order is maximum when: r = - i : Normal to the grating : Normal to the grooves rr (blaze angle) ii STANDARD GRATING BLAZED GRATING
16
Diffraction pattern 05/09/2015C2PU-Team, Observatoire de Nice16 sin( i ) + sin( r ) 0 Relative intensity / a 2 / a 3 / a - / a -2 / a -3 / a Order 0: non dispersive Order 1: dispersive Order 2: more dispersive Order 3: even more dispersive STANDARD GRATING
17
Diffraction pattern 05/09/2015C2PU-Team, Observatoire de Nice17 sin( i ) + sin( r ) 0 Relative intensity / a 2 / a 3 / a - / a -2 / a -3 / a Maximum of diffraction curve on order k ≠ 0 BLAZED GRATING Blaze angle depends on the central wavelength 0 and order k
18
Basics on spectrographs 05/09/2015C2PU-Team, Observatoire de Nice18 Dispersing element (grating) rr ii Collimated input beam Collimation optics Dispersed beam Camera optics Sensor Entrance slit Light from the telescope
19
Littrow configuration 05/09/2015C2PU-Team, Observatoire de Nice19 ii Littrow condition: r = i Collimator optics = Camera optics (cost effective configuration) rr
20
The LHIRES-III 05/09/2015C2PU-Team, Observatoire de Nice20
21
The LHIRES-III 05/09/2015C2PU-Team, Observatoire de Nice21 Micrometric screw (to tilt the gating) Diffraction blazed grating) Collimator / camera optics Bending mirror Science camera Guiding camera Focuser for the guiding camera Slit environment Bending mirror F/12.5 input beam from the telescope
22
The LHIRES-III 05/09/2015C2PU-Team, Observatoire de Nice22 Micrometric screw (to tilt the gating) Diffraction blazed grating) Collimator / camera optics Bending mirror Science port Guiding port Focuser for the guiding camera Slit environment Bending mirror F/12.5 input port
23
The LHIRES-III 05/09/2015C2PU-Team, Observatoire de Nice23
24
The slit environment 05/09/2015C2PU-Team, Observatoire de Nice24 Bending flat mirror Input beam (from telescope) Guiding output port Input slit Output port focusing optics Slit environment
25
The slit environment 05/09/2015C2PU-Team, Observatoire de Nice25 15 m slit 19 m slit Active slit 25 m slit 35 m slit Optically polished component: MUST HE HANDELED WITH CARE
26
The calibration lamp 05/09/2015C2PU-Team, Observatoire de Nice26 Calibration lamp housing Calibration lamp flip button
27
The Neon spectrum 05/09/2015C2PU-Team, Observatoire de Nice27
28
The diffraction ratings 05/09/2015C2PU-Team, Observatoire de Nice28 Protection frame Active grating surface Housing Tilt axis High precision optical component: MUST HE HANDELED WITH EXTREME CARE NO FINGER PRINTS ! Available gratings: 150 gr/mm 300 gr/mm 2400 gr/mm
29
The micrometric screw 05/09/2015C2PU-Team, Observatoire de Nice29 Fixed tilt axis Active grating surface 0 5 10 15 20 2530354045 Last visible mark: 23.5 Drum tick mark in front of the fixed index : 34 How to read the micrometric screw : Fixed index Value = 23.5+0.34 = 23.84 Micrometric screw Half-integer tick marks Integer tick marks
30
Configurations 05/09/2015C2PU-Team, Observatoire de Nice30 Available slits: 15 microns 19 microns 23 microns 35 microns 15 m19 m23 m35 m 150 gr/mm834731644465 300 gr/mm167314661293932 2400 gr/mm18900165001460010500 Slit Grating Spectral resolution @ 589nm Available gratings: 150 gr/mm 300 gr/mm 2400 gr/mm
31
Sample spectra 05/09/201531 The Hydrogen H line in the solar spectrum (LHIRES-III + 2400 gr/mm)
32
Sample spectra 05/09/201532 The Sodium D1 and D2 lines in the solar spectrum (LHIRES-III + 2400 gr/mm)
33
Sample spectra 05/09/201533 The Magnesium triplet in the solar spectrum (LHIRES-III + 2400 gr/mm)
34
Sample spectra 05/09/201534 The Hydrogen H line in Saturn’s spectrum (LHIRES-III + 2400 gr/mm) The lines are tilted by the planet’s surface rotation (Doppler effect)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.