Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich.

Similar presentations


Presentation on theme: "Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich."— Presentation transcript:

1 Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.1 L F F L0L0 LL F F A0A0  a b L0L0

2 z x y   zz  yz  xz A C D B Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.2

3       y zz xz yz yy zy xy xx zx yx x z    Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.3

4 Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.4 Maxwell Voigt-Kelvin

5 E 1  1 E 2  2 E 3  3 E ∞  1  2  3 E i  i  i Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.5

6 0 0    (t) 1 time t t   (t)    (t) 2   (t) 1 2   (t) =  (t) +  (t) 1 2 2 1 strain  stress  Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.6

7 T log E effective range master curve log (t) log t log (t ) 0 0 T 3 T 1 T 2 log a T Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.7

8  S 1 2 b) strain   F a) a b strain  stress  Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.8 1 – nominal (engineering) stress – strain curve 2 – true stress – strain curve

9 time t stress  strain  0  = const. time t stress   (t)  (t) strain  0  = const. time t Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.9

10 0  (t) strain  time t stress  1/f     (t) 0 Fig.: 4.10 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

11 E’’ E *  E’ i j Fig.: 4.11 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

12 a b 2 1 3 2 1 3 4 Fig.: 4.12 1 – prismatic specimen 2 – clamping device 3 – oscillating weight 4 – counterweight Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

13 time t 1/f ll 0 0 AnAn A n+1 deflection  l Fig.: 4.13 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

14 frequency f ff i 0 1 0.707 f i amplitude A/A max Fig.: 4.14 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

15 from generator to amplifier specimen clamp method Amethod B specimen to amplifier from generator textile filaments Fig.: 4.15 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

16 glass transition 10 8 6 4 2 log t glassy state E‘‘ (Pa) 10 10 0 1 rubber-elastic plateau flow region tan  E‘ (Pa) Fig.: 4.16       Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

17 10 8 6 4 E‘‘ (Pa) 0 1 tan  E‘ (Pa) T (°C) 10 -2 -150-100 -50 0 50 100 150 T  T g Fig.: 4.17 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

18 10 8 7 E‘ (Pa) 1/T (1000/K) 10 10 10 10 10 10 10 -6 -4 -2 0 2 4 6 10 f (Hz) effective range 0.1... 50 Hz T = 0 °C T = 50 °C master curve T = 25 °C 0 ln (a ) T 9 6 3.1 -5 5 15 Arrhenius-plot  H = 430 kJ mol 3.33.5 3.7 -15 Fig.: 4.18 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

19 log E‘ T increasing molecular weight increasing crystallinity increasing crosslink density Fig.: 4.19 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

20 10 E‘ (Pa) 10 0 1 2 3 T (°C) PB PS SBR SBS -150 -100 -50 0 50 100 150 200 250 tan  9 10 8 7 6 5 Fig.: 4.20 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

21 Fig.: 4.21 t  0 a  t  0 b   0 c  0   Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

22 without influence of time pure retardation pure relaxation with influence of time         b a c d   Fig.: 4.22 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

23 t (s) PS E (MPa) 10 2 3 3 2 1 0 -2 -3 4 -4 PVC PS-HI PE-HD PE-LD 10 2 3 T (°C) 40 20 0 -20-40 60 PS PVC PS-HI PE-HD PE-LD t a b E (MPa) t 10 4 4 Fig.: 4.23 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

24 A 0  (t) t = 0 t x F cross-head x z y cross-section h b L LL 1  L (t)  L L LL 01 0 L traverse path LL 02 v T F LL 0 0 L LL 2 LL 3 LL 4  L(t)=  L +  L +  L +  L 1 2 3 4  L (x) Fig.: 4.24 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

25 F  (s ) normative strain rate of dumb- bell specimen normative = nominal strain rate of prismatic specimen average nominal strain rate of dumbbell specimen LL L L 0 Fig.: 4.25 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

26 1A 1B 1BA 5A 2 5 4 1BB 5B b r d b 1 l l 2 l 1 L 0 3 L 2 Fig.: 4.26 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

27 a b 0 b  2  (MPa) F 2 F 1 F v LL  0 b 1  q q2 b 2 1 2  1  0 F (N) FF  = f(  )  L –  L 0102 LL v 01 LL 02  L (mm) 0  1  2  (%)  = f(  )  1  2  (%) LL 01 LL 02  L (mm) 0  L –  L 0102  b = b - b b (mm) q1   (%) q Fig.: 4.27 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

28  (%)  =   (MPa)       =  a b c d B y B B x t tB tM  =  B M y M  =  BM yM BM  (%) e   =  y M x  B M  tB Fig.: 4.28 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

29  (MPa)  =  yM  B      or  (%)  =  yM t   t  B  y  M y t Fig.: 4.29 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

30  (%)  (MPa) b 125 100 75 50 25 0 0 50 100 150 200  (MPa)  increasing a 125 100 75 50 25 0 0 50 100 150 200  (%) T decreasing Fig.: 4.30 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

31 7 12345 6 elongation without necking elongation with necking  (MPa)  (%) linear-viscoelastic region linear-elastic region non-linear viscoelastic region necking region steady-state plastic yielding strain-hardening region ultimative failure ─ fracture 1 2 3 4 5 6 7  = f (  ) defect density Q D  (%/min)  = f (  )  Q = f (  ) t D  (%) a b Fig.: 4.31 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

32 b 1 b m b 2 l e l 2 1 l red L r l m l Fig.: 4.32 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

33  (%)  (MPa) b 100 80 60 40 20 0 0 3 6 9 10 12  (%/min)  a 1.5 1.2 0.9 0.6 0.3 0 0 2 4 6 8 10  (%)  (%/min) 1.5 1.2 0.9 0.6 0.3 0 t  = f (  )  = f (  )  = f (  ) Fig.: 4.33 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

34 25 120 50 15° 75° notch clamp mark notch 100 90° R19 R25.4 27 28.4 R12.7 b a Fig.: 4.34 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

35 a b v F F F (N) F max  l (mm) T Fig.: 4.35 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition 0 2 4 6 8 10 12 14 0 10 20 30 40 parallel perpendicular to the processing direction

36 x z y A 0  (t) cross-section d b L LL 01 LL 02 F upper pressure plate traverse path F A = b d 0 F lower pressure plate L 0  L=  L −  L 02 01 Fig.: 4.36 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

37 x y prism cylinder tube I = y b d 3 12 A = b d 0 I = y  d 4 64 A = 0  d 2 4 l = d 3.46 l = 4 l l l d d i b d z d a d I = y  64 (d − d ) a 4 4 A = 0  4 l = 4 i (d − d ) a 2 2 i a 4 4 i a 2 2 i Fig.: 4.37 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

38 10 50 10 80 4 10 4 b a c Fig.: 4.38 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

39  c (%)  (MPa) M=BM=B xx yy  M =  B yy a b c d xx M=BM=B  cM =  cB  cy  (%) MM BB MM  cM BB  cB Fig.: 4.39 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

40  (MPa) yy  M =  B MM PS tensile test shear bands crazes  (%) yy Fig.: 4.40 PS compression test Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

41 specimen traverse bending jaw l ll F a a b Q = 0 M Q b support specimen F variable radii positioning slide traverse v anvil L T MbMb Q L/3 M max M v T b a M = F L 4 max M = F l 2 max a F 2 Q = F 2 Q = + transverse force Q F 2 Q = bending moment M b F 2 Q = + Fig.: 4.41 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

42 x z y  -- ++ x y z h -- ++ x y z h max h b z y F EI L/2 y  max b a c f Fig.: 4.42 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

43 deflection sensor anvil F traverse v T a F v T fork sensor anvil b support f f Fig.: 4.43 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

44 a b 10 80 4 B D A C h b h b h h b b width direction of the product length direction of the product (processing direction) Fig.: 4.44 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

45 a b c f (mm)  (MPa) xx  fM  =   fB  fM  f (%) xx  fB  fB  fC f  fM  fB fBfB fMfM fBfB fCfC Fig.: 4.45 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

46  (MPa)  f (%) f 0 0.51.01.52.02.53.03.54.0 0 20 40 60 80 100 120 140 160 180 200 0 wt.-% 10 wt.-% 20 wt.-% 30 wt.-% 50 wt.-% PP/GF 40 wt.-% Fig.: 4.46 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

47 CHARPY arrangementIZOD arrangement anvil support span support F impact direction F anvil specimen support Fig.: 4.47 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

48  (mm) A D B C PVC Nylon POM ABS PMMA 40 30 20 10 0 0 1.6 1.2 0.8 0.4 0.0 10 10 10 -2 a b 1  (mm) 0 a (kJ m ) cN -2 a (kJ m ) iN -2 Fig.: 4.48 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

49 F (N) 500 400 300 200 100 0 0.0 0.5 1.0 1.5 2.0 2.5 a cN a f (mm) a  a cN Fig.: 4.49 1 1 2 2 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

50 Fig.: 4.50 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

51 0.00.20.40.60.8 120 160 200 240 280 320 compatibilizer content (wt.-%) E (kJ m ) MAH phenol -2 Fig.: 4.51 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

52 guiding device for the drop weight arrest and trigger device drop weight striker support frame base plate specimen clamp D 2 D 3 D 4 R H H Fig.: 4.52 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

53 a b c Fig.: 4.53 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

54 t (ms) 3.6 3.8 4.0 4.2 F (N) H test speed energy load deformation 100 80 60 40 20 0 30 25 20 15 10 5 0 1.0 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 4.4 E (J) s (mm) v (ms ) Fig.: 4.54 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

55 pipe specimen support strain gauge drop weight F  = 0°  = 45°  = 90° test arrangement 0 10 2030 0 200 400 600 800 F (N) t (ms) weld joints  = 0° a b Fig.: 4.55 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

56  t  1 stress cycle  m  a  a  u Fig.: 4.56 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

57  >  m a + tension range for pulsating compressive stresses tensile stresses 1 2 3 4 5 6 7 compression  =  m a  <  m a m a  =  m a  >  m a  = 0 m range for pulsating stresses Fig.: 4.57 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

58 f measurement motion link rotating axis specimen directing spring drive motion link zero position eccentric hub eccentric drive supporting bracket of rotating axis load cell Fig.: 4.58 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

59 failure by fracture S–N curve temperature damage line 10 10 4 5 6 7 N 160 140 120 100 80 60 40 20 0 10 10 4 5 6 7 N 80 60 40 20 0 T (°C) f = 11.2 Hz T b a T (°C) Fig.: 4.59 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition  (MPa) a1  (MPa) a1 

60 a specimen load cell strain-controlled test device clamp b controller Fig.: 4.60 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

61 Fig.: 4.61 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

62 Fig.: 4.62 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition 10 10 10 10 10 10 10 0 1 2 3 4 5 6 1000 900 800 700 600 500 400 300 200 average curve P c = 90 % - curve N s = -1  (MPa) a

63 pul PA/GF P c10 P c90 P P c10 CFK 260 210 160 110 60 10 10 10 10 2 3 4 5 6 7 N s = 0.1 Fig.: 4.63 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

64 log  alternating fatigue strength N K K log N D I II  D x Fig.: 4.64 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

65 arctan k N K log N D arctan k  D T  P = 90 % c 50 % 10 % T N i a log  b  D i N K log N D i a log  i Fig.: 4.65 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition  a  a  a 1 2 3

66 material: fiber reinforcing: CF, GF, AF matrix material: thermoplastic resin, thermoset reinforcement : UD, fabric, mat fiber orientation, positioning fiber content, filler content material treatment: post-curing, conditioning loading: tensile, compression, bending, load ratio loading type: sine, rectangle, triangle test frequency environment: temperature, humidity, medium S–N curve following fracture or failure criteria thermal failure fatigue stress failure stress cycle number N Fig.: 4.66 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition load level

67  (MPa) a 100 90 80 70 60 50 40 30 10 10 3 4 5 6 perpendicular to flow direction N Fig.: 4.67 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

68  (MPa) a 60 40 20 0 10 10 10 10 10 3 4 5 6 7 N compression cyclic loading tensile cyclic loading tension – compression loading Fig.: 4.68 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

69 0  = const. t = const.  = const.  = f ( ,t) 0 log t  0  Fig.: 4.69 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

70 specimen clamping device base frame loading device optical deformation measurement sensor mass Fig.: 4.70 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

71 t t 1 2 3 4 t t 1 2 3 4 log t  1  2  3  4  1  2  3  4  (%)  1  2  3  4 log t t 1 t 1 < t 2 < t 3 < t 4  (%)  1  2  3  4 log t ab d c  (MPa) E (MPa) c  1 <  2 <  3 <  4 t 2 t 3 t 4  1 <  2 <  3 <  4 t t t t 1 2 3 4 Fig.: 4.71 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

72 1.0 0.8 0.6 0.4 0.2 0 10 10 10 -1 0 1 2 3 4 0  (MPa) 2 4 5 6 8 10 t (h) 2 10 1 8 6 4 2 0 2 4 6 810 2 4 6 8 10 0 1 10 0 1 2 3 4 b 5 4 3 2 1 0 10 MPa 8 MPa 6 MPa 2 MPa 4 MPa 5 MPa 10 8 6 4 2 0 3.0 % 2.5 % 2.0 % 1.5 % 1.0 % 0.5 %  (%) t (h)  (%) a d c    (MPa) E c (MPa)    (MPa) t (h) 10 10 10 -1 0 1 2 3 4 10 10 10 -1 0 1 2 3 4 Fig.: 4.72 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

73 10 10 10 -1 0 1 2 3 4 b 14 12 8 6 4 0 t (h) a 10 10 10 -1 0 1 2 3 4  (%) 0  (MPa) water 20 °C 23 20 18 15 12 9 6 3 tensile creep strength wash lye 20 °C 12 9 6 3 15 18 19 20 21  (%) 10 2 14 12 8 6 4 0 10 2 0  (MPa) Fig.: 4.73 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

74  (MPa) 10 10 10 1 2 3 4 5 6 t (h) B  <  <  1 2 3    3 2 1 Fig.: 4.74 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

75 clamping jig frame elongation measurement device specimen load cell Fig.: 4.75 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

76 10 10 10 10 10 -1 0 1 2 3 1000  = 1 % 600 400 200 100 t (h)  = 2 %  = 3 % E (MPa) r Fig.: 4.76 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

77 b a d 4.5 4.0 3.5 3.0 2.5 2.0 10 10 10 t (h) 10 MPa 20 MPa 30 MPa 40 MPa 50 MPa 60 MPa 0 12 3 4 t (h) 10 1 80 60 40 20 10 2 10 2 4 6 8 10  r (%) 10 0 1 2 3 4 2 4 8 6 2.5 2.0 1.5 1.0 0.5 0 60 MPa 50 MPa 40 MPa 10 MPa 20 MPa 30 MPa 10 10 10 t (h) 0 12 3 4 60 48 36 24 12 0 1.50 % 0.25 % 1.00 % 1.25 % 0.75 % 0.50 % c 10 10 10 t (h) 0 12 3 4  (%)  (MPa) E (GPa) c 0  (MPa) 0 0 Fig.: 4.77 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

78 b a d 1.0 0.8 0.6 0.4 0.2 0 10 10 10 t (h) 0 12 3 4 2 0 10 8 4 2 1 6 8 10 2 4 6 8 10  r (%) 2 10 12.5 10.0 7.5 5.0 2.5 0 10 10 10 t (h) 0 12 3 4 12.5 10.0 7.5 5.0 2.5 0 c 10 10 10 t (h) 0 12 3 4  (%)  (MPa) E (GPa) c 0  (MPa) 0 0 1 10 MPa 8 MPa 6 MPa 5 MPa 4 MPa 2 MPa t (h) 10 0 1 2 3 5.0 % 4.0 % 3.0 % 2.0 % 1.0 % 0.5 %  0 (MPa) 2 4 5 6 8 10 6 Fig.: 4.78 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

79 Fig.: 4.79 material behaviour related to deformation and time indentations after unloading mostly plastic viscoelastic- plastic rubber- elastic time t 1 deformation 2 t 1 2 1 2 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

80 orientation Vickers Knoop Fig.: 4.80 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

81 1 2 3 4 specimen support steel ball dial gauge load step frame F h h(t) 0 F0F0 F 0 + F D Fig.: 4.81 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

82 Shore A a ll h F F Shore D a ll h Fig.: 4.82 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

83 Shore A 120 80 40 0 100 200 300 400 HB (Nmm ) -2 100 80 60 40 20 0 10 20 30 40 50 Shore D b a HR  Fig.: 4.83 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

84 10 0 10 -2 10 -3 10 -4 10 -5 10 -6 10 0 1 2 3 4 HM (MPa) h (mm) 10 N -6 0.02 N 30 kN polymers non-ferrous metals steels hard metals ceramics rubber 2 N > F and h > 200 nm h < 200 nm 2 N 2 N < F < 30 kN macrohardness microhardness nanohardness load F Fig.: 4.84 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

85 indenter specimen load cell adapter distance measurement traverse adapter specimen frame load cell indenter socket support Fig.: 4.85 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

86 Fig.: 4.86 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

87 h r h max h p S h F F W plast a b h c W elast Fig.: 4.87 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

88 0100200300 0 0.05 0.10 0.15 0.20 h (nm)  F (mN)    100 µm Fig.: 4.88 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

89 H (MPa) 050100150 100 1500 2000 2500 3000 T (°C) a 510152025 initial state 140 °C 150 °C I (nm) theo E H IT 120 140 160 180 200 IT b a E (MPa) IT Fig.: 4.89 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

90  (MPa) y HV (MPa) PVC + 35 % DOP PE-LD PTFE PE-HD PP CA ABS PVC PC PPO POM PS POM-Co SAN PMMA 250 200 150 100 50 0 0 20 40 60 80 100 HV  2.33  y PVC+25 % DOP PA6; 9 % H O 2 PA6; 3 % H O 2 PA6; 0.4 % H O 2 Fig.: 4.90 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

91  (MPa) y H (MPa) 60 40 20 0 0 20 40 60 80 100 60 40 20 0 0 10 20 30 150 100 50 0 0 20 40 60  (%) H = 3.05  y H = 1.75  y tensile compression 0 mol.-% ethylene 4 mol.-% ethylene 6 mol.-% ethylene 8 mol.-% ethylene  (MPa) IT  (%) a b c 0 mol.-% ethylene 4 mol.-% ethylene 6 mol.-% ethylene 8 mol.-% ethylene Fig.: 4.91 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

92 a 0.050 0.045 0.040 0 2 4 6 8 ethylene content (mol.-%) H / E IT 3.0 2.5 2.0 1.5 1.0 0.044 0.046 0.048 0.050 b IT H / E IT J (Nmm ) Id ST increase of plasticity Fig.: 4.92 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

93  (MPa) y HV (MPa) 0 0 20 40 60 80 PE-HD PP PVC PMMA 200 150 100 50 PS Fig.: 4.93 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition

94 Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.94 F N specimen counter part continuous rotation test principle: block-on-ring test principle: pin-on-disc F specimen counter part continuous rotation wear track a b N v v

95 F N specimen test principle: cyclic wear counter part oscillation wear track dot contact line contact area contact Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.95

96 W l : linear wear value wear area A V W V =W l ·A V volumetric wear value W V =W q ·l l W q :planimetric wear value Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.96 volumetric wear value

97 static load limit p-v line at defined stationary wear rate p-v limit thermal limit log v linear wear rate  p  v log p Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.97

98 00.51.01.5 0 0.2 0.3 0.4 0.5 µ R(µm) 1E -7 1E -6 1E - 1E -4 1E -3 10 -3 10 -4 10 -5 10 -6 10 -7 friction coefficient specific wear rate p = 1.4 MPa v = 1 m/s R (µm) a 0.1 W (mm /Nm) s 3 Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.98

99 high- performance polymer internal lubricants (PTFE, graphite,...) reinforcements (glass-fibers, carbon-fibers) Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.99

100 0100 0 0.8 R(µm) 10 -3 PTFE (vol.-%) W (mm /Nm) s 3 friction coefficient specific wear rate p = 1 MPa v = 1 m/s optimal region 10 -4 10 -5 10 -6 µ 0.6 0.4 0.2 2040 60 80 Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.100

101 025 R(µm) 10 -4  (vol.-%) W (mm /Nm) s 3 matrix glass-fiber carbon-fiber p  v = 1.7 MPa  m/s 10 -5 10 -6 10 -7 510 15 20 v Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.101

102 0250 R(µm) 0.3 W (mm /Nm) s 3 50100 150 200 friction coefficient specific wear rate T (°C) 0 µ 0 2 4 6 8 10 0.2 0.1 Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.102

103 0 0.1 0.2 µ 10 10 -3 -5 6.2 3.1 0.62 v (m min ) T 1 T 2 p (N mm ) -2 Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.103

104 Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.104 W (mm /Nm) s 3 10 0 5 15 8 6 4 2 0 TiO (vol.-%) 2 SCF (vol.-%) -3 -4 -5 -6 -7 0.8 0.6 0.4 0.2 0 0.0 5 10 15 8 6 4 2 0 TiO (vol.-%) 2 SCF (vol.-%) µ 0.8 0.6 0.4 0.2 0 0.0 5 10 15 8 6 4 2 0 TiO (vol.-%) 2 SCF (vol.-%) µ 10 0 5 15 8 6 4 2 0 TiO (vol.-%) 2 SCF (vol.-%) -3 -4 -5 -6 -7 W (mm /Nm) s 3


Download ppt "Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich."

Similar presentations


Ads by Google