Download presentation
Presentation is loading. Please wait.
Published byHugh Conley Modified over 9 years ago
1
Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.1 L F F L0L0 LL F F A0A0 a b L0L0
2
z x y zz yz xz A C D B Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.2
3
y zz xz yz yy zy xy xx zx yx x z Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.3
4
Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.4 Maxwell Voigt-Kelvin
5
E 1 1 E 2 2 E 3 3 E ∞ 1 2 3 E i i i Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.5
6
0 0 (t) 1 time t t (t) (t) 2 (t) 1 2 (t) = (t) + (t) 1 2 2 1 strain stress Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.6
7
T log E effective range master curve log (t) log t log (t ) 0 0 T 3 T 1 T 2 log a T Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.7
8
S 1 2 b) strain F a) a b strain stress Chapter 4.1: Lüpke, T.: Fundamental Principles of Mechanical Behaviour. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.8 1 – nominal (engineering) stress – strain curve 2 – true stress – strain curve
9
time t stress strain 0 = const. time t stress (t) (t) strain 0 = const. time t Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.9
10
0 (t) strain time t stress 1/f (t) 0 Fig.: 4.10 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
11
E’’ E * E’ i j Fig.: 4.11 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
12
a b 2 1 3 2 1 3 4 Fig.: 4.12 1 – prismatic specimen 2 – clamping device 3 – oscillating weight 4 – counterweight Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
13
time t 1/f ll 0 0 AnAn A n+1 deflection l Fig.: 4.13 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
14
frequency f ff i 0 1 0.707 f i amplitude A/A max Fig.: 4.14 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
15
from generator to amplifier specimen clamp method Amethod B specimen to amplifier from generator textile filaments Fig.: 4.15 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
16
glass transition 10 8 6 4 2 log t glassy state E‘‘ (Pa) 10 10 0 1 rubber-elastic plateau flow region tan E‘ (Pa) Fig.: 4.16 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
17
10 8 6 4 E‘‘ (Pa) 0 1 tan E‘ (Pa) T (°C) 10 -2 -150-100 -50 0 50 100 150 T T g Fig.: 4.17 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
18
10 8 7 E‘ (Pa) 1/T (1000/K) 10 10 10 10 10 10 10 -6 -4 -2 0 2 4 6 10 f (Hz) effective range 0.1... 50 Hz T = 0 °C T = 50 °C master curve T = 25 °C 0 ln (a ) T 9 6 3.1 -5 5 15 Arrhenius-plot H = 430 kJ mol 3.33.5 3.7 -15 Fig.: 4.18 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
19
log E‘ T increasing molecular weight increasing crystallinity increasing crosslink density Fig.: 4.19 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
20
10 E‘ (Pa) 10 0 1 2 3 T (°C) PB PS SBR SBS -150 -100 -50 0 50 100 150 200 250 tan 9 10 8 7 6 5 Fig.: 4.20 Chapter 4.2: Lüpke, T.: Mechanical Spectroscopy. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
21
Fig.: 4.21 t 0 a t 0 b 0 c 0 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
22
without influence of time pure retardation pure relaxation with influence of time b a c d Fig.: 4.22 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
23
t (s) PS E (MPa) 10 2 3 3 2 1 0 -2 -3 4 -4 PVC PS-HI PE-HD PE-LD 10 2 3 T (°C) 40 20 0 -20-40 60 PS PVC PS-HI PE-HD PE-LD t a b E (MPa) t 10 4 4 Fig.: 4.23 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
24
A 0 (t) t = 0 t x F cross-head x z y cross-section h b L LL 1 L (t) L L LL 01 0 L traverse path LL 02 v T F LL 0 0 L LL 2 LL 3 LL 4 L(t)= L + L + L + L 1 2 3 4 L (x) Fig.: 4.24 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
25
F (s ) normative strain rate of dumb- bell specimen normative = nominal strain rate of prismatic specimen average nominal strain rate of dumbbell specimen LL L L 0 Fig.: 4.25 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
26
1A 1B 1BA 5A 2 5 4 1BB 5B b r d b 1 l l 2 l 1 L 0 3 L 2 Fig.: 4.26 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
27
a b 0 b 2 (MPa) F 2 F 1 F v LL 0 b 1 q q2 b 2 1 2 1 0 F (N) FF = f( ) L – L 0102 LL v 01 LL 02 L (mm) 0 1 2 (%) = f( ) 1 2 (%) LL 01 LL 02 L (mm) 0 L – L 0102 b = b - b b (mm) q1 (%) q Fig.: 4.27 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
28
(%) = (MPa) = a b c d B y B B x t tB tM = B M y M = BM yM BM (%) e = y M x B M tB Fig.: 4.28 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
29
(MPa) = yM B or (%) = yM t t B y M y t Fig.: 4.29 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
30
(%) (MPa) b 125 100 75 50 25 0 0 50 100 150 200 (MPa) increasing a 125 100 75 50 25 0 0 50 100 150 200 (%) T decreasing Fig.: 4.30 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
31
7 12345 6 elongation without necking elongation with necking (MPa) (%) linear-viscoelastic region linear-elastic region non-linear viscoelastic region necking region steady-state plastic yielding strain-hardening region ultimative failure ─ fracture 1 2 3 4 5 6 7 = f ( ) defect density Q D (%/min) = f ( ) Q = f ( ) t D (%) a b Fig.: 4.31 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
32
b 1 b m b 2 l e l 2 1 l red L r l m l Fig.: 4.32 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
33
(%) (MPa) b 100 80 60 40 20 0 0 3 6 9 10 12 (%/min) a 1.5 1.2 0.9 0.6 0.3 0 0 2 4 6 8 10 (%) (%/min) 1.5 1.2 0.9 0.6 0.3 0 t = f ( ) = f ( ) = f ( ) Fig.: 4.33 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
34
25 120 50 15° 75° notch clamp mark notch 100 90° R19 R25.4 27 28.4 R12.7 b a Fig.: 4.34 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
35
a b v F F F (N) F max l (mm) T Fig.: 4.35 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition 0 2 4 6 8 10 12 14 0 10 20 30 40 parallel perpendicular to the processing direction
36
x z y A 0 (t) cross-section d b L LL 01 LL 02 F upper pressure plate traverse path F A = b d 0 F lower pressure plate L 0 L= L − L 02 01 Fig.: 4.36 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
37
x y prism cylinder tube I = y b d 3 12 A = b d 0 I = y d 4 64 A = 0 d 2 4 l = d 3.46 l = 4 l l l d d i b d z d a d I = y 64 (d − d ) a 4 4 A = 0 4 l = 4 i (d − d ) a 2 2 i a 4 4 i a 2 2 i Fig.: 4.37 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
38
10 50 10 80 4 10 4 b a c Fig.: 4.38 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
39
c (%) (MPa) M=BM=B xx yy M = B yy a b c d xx M=BM=B cM = cB cy (%) MM BB MM cM BB cB Fig.: 4.39 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
40
(MPa) yy M = B MM PS tensile test shear bands crazes (%) yy Fig.: 4.40 PS compression test Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
41
specimen traverse bending jaw l ll F a a b Q = 0 M Q b support specimen F variable radii positioning slide traverse v anvil L T MbMb Q L/3 M max M v T b a M = F L 4 max M = F l 2 max a F 2 Q = F 2 Q = + transverse force Q F 2 Q = bending moment M b F 2 Q = + Fig.: 4.41 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
42
x z y -- ++ x y z h -- ++ x y z h max h b z y F EI L/2 y max b a c f Fig.: 4.42 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
43
deflection sensor anvil F traverse v T a F v T fork sensor anvil b support f f Fig.: 4.43 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
44
a b 10 80 4 B D A C h b h b h h b b width direction of the product length direction of the product (processing direction) Fig.: 4.44 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
45
a b c f (mm) (MPa) xx fM = fB fM f (%) xx fB fB fC f fM fB fBfB fMfM fBfB fCfC Fig.: 4.45 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
46
(MPa) f (%) f 0 0.51.01.52.02.53.03.54.0 0 20 40 60 80 100 120 140 160 180 200 0 wt.-% 10 wt.-% 20 wt.-% 30 wt.-% 50 wt.-% PP/GF 40 wt.-% Fig.: 4.46 Chapter 4.3: Bierögel, C.: Quasi-Static Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
47
CHARPY arrangementIZOD arrangement anvil support span support F impact direction F anvil specimen support Fig.: 4.47 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
48
(mm) A D B C PVC Nylon POM ABS PMMA 40 30 20 10 0 0 1.6 1.2 0.8 0.4 0.0 10 10 10 -2 a b 1 (mm) 0 a (kJ m ) cN -2 a (kJ m ) iN -2 Fig.: 4.48 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
49
F (N) 500 400 300 200 100 0 0.0 0.5 1.0 1.5 2.0 2.5 a cN a f (mm) a a cN Fig.: 4.49 1 1 2 2 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
50
Fig.: 4.50 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
51
0.00.20.40.60.8 120 160 200 240 280 320 compatibilizer content (wt.-%) E (kJ m ) MAH phenol -2 Fig.: 4.51 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
52
guiding device for the drop weight arrest and trigger device drop weight striker support frame base plate specimen clamp D 2 D 3 D 4 R H H Fig.: 4.52 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
53
a b c Fig.: 4.53 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
54
t (ms) 3.6 3.8 4.0 4.2 F (N) H test speed energy load deformation 100 80 60 40 20 0 30 25 20 15 10 5 0 1.0 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 6 7 4.4 E (J) s (mm) v (ms ) Fig.: 4.54 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
55
pipe specimen support strain gauge drop weight F = 0° = 45° = 90° test arrangement 0 10 2030 0 200 400 600 800 F (N) t (ms) weld joints = 0° a b Fig.: 4.55 Chapter 4.4: Impact Loading. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
56
t 1 stress cycle m a a u Fig.: 4.56 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
57
> m a + tension range for pulsating compressive stresses tensile stresses 1 2 3 4 5 6 7 compression = m a < m a m a = m a > m a = 0 m range for pulsating stresses Fig.: 4.57 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
58
f measurement motion link rotating axis specimen directing spring drive motion link zero position eccentric hub eccentric drive supporting bracket of rotating axis load cell Fig.: 4.58 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
59
failure by fracture S–N curve temperature damage line 10 10 4 5 6 7 N 160 140 120 100 80 60 40 20 0 10 10 4 5 6 7 N 80 60 40 20 0 T (°C) f = 11.2 Hz T b a T (°C) Fig.: 4.59 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition (MPa) a1 (MPa) a1
60
a specimen load cell strain-controlled test device clamp b controller Fig.: 4.60 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
61
Fig.: 4.61 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
62
Fig.: 4.62 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition 10 10 10 10 10 10 10 0 1 2 3 4 5 6 1000 900 800 700 600 500 400 300 200 average curve P c = 90 % - curve N s = -1 (MPa) a
63
pul PA/GF P c10 P c90 P P c10 CFK 260 210 160 110 60 10 10 10 10 2 3 4 5 6 7 N s = 0.1 Fig.: 4.63 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
64
log alternating fatigue strength N K K log N D I II D x Fig.: 4.64 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
65
arctan k N K log N D arctan k D T P = 90 % c 50 % 10 % T N i a log b D i N K log N D i a log i Fig.: 4.65 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition a a a 1 2 3
66
material: fiber reinforcing: CF, GF, AF matrix material: thermoplastic resin, thermoset reinforcement : UD, fabric, mat fiber orientation, positioning fiber content, filler content material treatment: post-curing, conditioning loading: tensile, compression, bending, load ratio loading type: sine, rectangle, triangle test frequency environment: temperature, humidity, medium S–N curve following fracture or failure criteria thermal failure fatigue stress failure stress cycle number N Fig.: 4.66 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition load level
67
(MPa) a 100 90 80 70 60 50 40 30 10 10 3 4 5 6 perpendicular to flow direction N Fig.: 4.67 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
68
(MPa) a 60 40 20 0 10 10 10 10 10 3 4 5 6 7 N compression cyclic loading tensile cyclic loading tension – compression loading Fig.: 4.68 Chapter 4.5: Höninger, H.: Fatigue Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
69
0 = const. t = const. = const. = f ( ,t) 0 log t 0 Fig.: 4.69 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
70
specimen clamping device base frame loading device optical deformation measurement sensor mass Fig.: 4.70 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
71
t t 1 2 3 4 t t 1 2 3 4 log t 1 2 3 4 1 2 3 4 (%) 1 2 3 4 log t t 1 t 1 < t 2 < t 3 < t 4 (%) 1 2 3 4 log t ab d c (MPa) E (MPa) c 1 < 2 < 3 < 4 t 2 t 3 t 4 1 < 2 < 3 < 4 t t t t 1 2 3 4 Fig.: 4.71 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
72
1.0 0.8 0.6 0.4 0.2 0 10 10 10 -1 0 1 2 3 4 0 (MPa) 2 4 5 6 8 10 t (h) 2 10 1 8 6 4 2 0 2 4 6 810 2 4 6 8 10 0 1 10 0 1 2 3 4 b 5 4 3 2 1 0 10 MPa 8 MPa 6 MPa 2 MPa 4 MPa 5 MPa 10 8 6 4 2 0 3.0 % 2.5 % 2.0 % 1.5 % 1.0 % 0.5 % (%) t (h) (%) a d c (MPa) E c (MPa) (MPa) t (h) 10 10 10 -1 0 1 2 3 4 10 10 10 -1 0 1 2 3 4 Fig.: 4.72 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
73
10 10 10 -1 0 1 2 3 4 b 14 12 8 6 4 0 t (h) a 10 10 10 -1 0 1 2 3 4 (%) 0 (MPa) water 20 °C 23 20 18 15 12 9 6 3 tensile creep strength wash lye 20 °C 12 9 6 3 15 18 19 20 21 (%) 10 2 14 12 8 6 4 0 10 2 0 (MPa) Fig.: 4.73 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
74
(MPa) 10 10 10 1 2 3 4 5 6 t (h) B < < 1 2 3 3 2 1 Fig.: 4.74 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
75
clamping jig frame elongation measurement device specimen load cell Fig.: 4.75 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
76
10 10 10 10 10 -1 0 1 2 3 1000 = 1 % 600 400 200 100 t (h) = 2 % = 3 % E (MPa) r Fig.: 4.76 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
77
b a d 4.5 4.0 3.5 3.0 2.5 2.0 10 10 10 t (h) 10 MPa 20 MPa 30 MPa 40 MPa 50 MPa 60 MPa 0 12 3 4 t (h) 10 1 80 60 40 20 10 2 10 2 4 6 8 10 r (%) 10 0 1 2 3 4 2 4 8 6 2.5 2.0 1.5 1.0 0.5 0 60 MPa 50 MPa 40 MPa 10 MPa 20 MPa 30 MPa 10 10 10 t (h) 0 12 3 4 60 48 36 24 12 0 1.50 % 0.25 % 1.00 % 1.25 % 0.75 % 0.50 % c 10 10 10 t (h) 0 12 3 4 (%) (MPa) E (GPa) c 0 (MPa) 0 0 Fig.: 4.77 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
78
b a d 1.0 0.8 0.6 0.4 0.2 0 10 10 10 t (h) 0 12 3 4 2 0 10 8 4 2 1 6 8 10 2 4 6 8 10 r (%) 2 10 12.5 10.0 7.5 5.0 2.5 0 10 10 10 t (h) 0 12 3 4 12.5 10.0 7.5 5.0 2.5 0 c 10 10 10 t (h) 0 12 3 4 (%) (MPa) E (GPa) c 0 (MPa) 0 0 1 10 MPa 8 MPa 6 MPa 5 MPa 4 MPa 2 MPa t (h) 10 0 1 2 3 5.0 % 4.0 % 3.0 % 2.0 % 1.0 % 0.5 % 0 (MPa) 2 4 5 6 8 10 6 Fig.: 4.78 Chapter 4.6: Höninger, H.: Long-Term Static Behavior. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
79
Fig.: 4.79 material behaviour related to deformation and time indentations after unloading mostly plastic viscoelastic- plastic rubber- elastic time t 1 deformation 2 t 1 2 1 2 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
80
orientation Vickers Knoop Fig.: 4.80 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
81
1 2 3 4 specimen support steel ball dial gauge load step frame F h h(t) 0 F0F0 F 0 + F D Fig.: 4.81 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
82
Shore A a ll h F F Shore D a ll h Fig.: 4.82 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
83
Shore A 120 80 40 0 100 200 300 400 HB (Nmm ) -2 100 80 60 40 20 0 10 20 30 40 50 Shore D b a HR Fig.: 4.83 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
84
10 0 10 -2 10 -3 10 -4 10 -5 10 -6 10 0 1 2 3 4 HM (MPa) h (mm) 10 N -6 0.02 N 30 kN polymers non-ferrous metals steels hard metals ceramics rubber 2 N > F and h > 200 nm h < 200 nm 2 N 2 N < F < 30 kN macrohardness microhardness nanohardness load F Fig.: 4.84 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
85
indenter specimen load cell adapter distance measurement traverse adapter specimen frame load cell indenter socket support Fig.: 4.85 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
86
Fig.: 4.86 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
87
h r h max h p S h F F W plast a b h c W elast Fig.: 4.87 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
88
0100200300 0 0.05 0.10 0.15 0.20 h (nm) F (mN) 100 µm Fig.: 4.88 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
89
H (MPa) 050100150 100 1500 2000 2500 3000 T (°C) a 510152025 initial state 140 °C 150 °C I (nm) theo E H IT 120 140 160 180 200 IT b a E (MPa) IT Fig.: 4.89 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
90
(MPa) y HV (MPa) PVC + 35 % DOP PE-LD PTFE PE-HD PP CA ABS PVC PC PPO POM PS POM-Co SAN PMMA 250 200 150 100 50 0 0 20 40 60 80 100 HV 2.33 y PVC+25 % DOP PA6; 9 % H O 2 PA6; 3 % H O 2 PA6; 0.4 % H O 2 Fig.: 4.90 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
91
(MPa) y H (MPa) 60 40 20 0 0 20 40 60 80 100 60 40 20 0 0 10 20 30 150 100 50 0 0 20 40 60 (%) H = 3.05 y H = 1.75 y tensile compression 0 mol.-% ethylene 4 mol.-% ethylene 6 mol.-% ethylene 8 mol.-% ethylene (MPa) IT (%) a b c 0 mol.-% ethylene 4 mol.-% ethylene 6 mol.-% ethylene 8 mol.-% ethylene Fig.: 4.91 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
92
a 0.050 0.045 0.040 0 2 4 6 8 ethylene content (mol.-%) H / E IT 3.0 2.5 2.0 1.5 1.0 0.044 0.046 0.048 0.050 b IT H / E IT J (Nmm ) Id ST increase of plasticity Fig.: 4.92 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
93
(MPa) y HV (MPa) 0 0 20 40 60 80 PE-HD PP PVC PMMA 200 150 100 50 PS Fig.: 4.93 Chapter 4.7: Hardness Test Methods. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition
94
Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.94 F N specimen counter part continuous rotation test principle: block-on-ring test principle: pin-on-disc F specimen counter part continuous rotation wear track a b N v v
95
F N specimen test principle: cyclic wear counter part oscillation wear track dot contact line contact area contact Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.95
96
W l : linear wear value wear area A V W V =W l ·A V volumetric wear value W V =W q ·l l W q :planimetric wear value Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.96 volumetric wear value
97
static load limit p-v line at defined stationary wear rate p-v limit thermal limit log v linear wear rate p v log p Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.97
98
00.51.01.5 0 0.2 0.3 0.4 0.5 µ R(µm) 1E -7 1E -6 1E - 1E -4 1E -3 10 -3 10 -4 10 -5 10 -6 10 -7 friction coefficient specific wear rate p = 1.4 MPa v = 1 m/s R (µm) a 0.1 W (mm /Nm) s 3 Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.98
99
high- performance polymer internal lubricants (PTFE, graphite,...) reinforcements (glass-fibers, carbon-fibers) Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.99
100
0100 0 0.8 R(µm) 10 -3 PTFE (vol.-%) W (mm /Nm) s 3 friction coefficient specific wear rate p = 1 MPa v = 1 m/s optimal region 10 -4 10 -5 10 -6 µ 0.6 0.4 0.2 2040 60 80 Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.100
101
025 R(µm) 10 -4 (vol.-%) W (mm /Nm) s 3 matrix glass-fiber carbon-fiber p v = 1.7 MPa m/s 10 -5 10 -6 10 -7 510 15 20 v Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.101
102
0250 R(µm) 0.3 W (mm /Nm) s 3 50100 150 200 friction coefficient specific wear rate T (°C) 0 µ 0 2 4 6 8 10 0.2 0.1 Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.102
103
0 0.1 0.2 µ 10 10 -3 -5 6.2 3.1 0.62 v (m min ) T 1 T 2 p (N mm ) -2 Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.103
104
Chapter 4.8: Friedrich, K.: Friction and Wear. In: Grellmann, W., Seidler, S. (Eds.): Polymer Testing. Carl Hanser Verlag, Munich (2013) 2. Edition Fig.: 4.104 W (mm /Nm) s 3 10 0 5 15 8 6 4 2 0 TiO (vol.-%) 2 SCF (vol.-%) -3 -4 -5 -6 -7 0.8 0.6 0.4 0.2 0 0.0 5 10 15 8 6 4 2 0 TiO (vol.-%) 2 SCF (vol.-%) µ 0.8 0.6 0.4 0.2 0 0.0 5 10 15 8 6 4 2 0 TiO (vol.-%) 2 SCF (vol.-%) µ 10 0 5 15 8 6 4 2 0 TiO (vol.-%) 2 SCF (vol.-%) -3 -4 -5 -6 -7 W (mm /Nm) s 3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.