Download presentation
Presentation is loading. Please wait.
Published byAllen Randall Modified over 9 years ago
1
Promoptica “Nouvelles Techniques d’Eclairage” Inorganic LEDs: working principles and prospects for general lighting applications Laboratory for Light and Lighting KaHo St.-Lieven University College Gent (B) P. Hanselaer Liège Novembre 8, 2007
2
Laboratorium voor Lichttechnologie 1. Main categories of light sources
3
Laboratorium voor Lichttechnologie Light sources DischargeIncandescent Mercury Sodium Low pressure High pressure FL, CFL Metalhalide Outdoor illumination Outdoor, Shops Solid State LED Low pressure High pressure
4
Laboratorium voor Lichttechnologie 2. Elementary Solid State Physics
5
Laboratorium voor Lichttechnologie Intrinsic semiconductor “Free” electrons and holes Bandgap E g E Conduction band Valence band
6
Laboratorium voor Lichttechnologie Recombination between an electron and a hole: energy can be released by the creation of a photon Band gap E g E At room temperature: only a small amount of free electrons and holes: limited number of photons! Photon Light!
7
Laboratorium voor Lichttechnologie Extrinsic semiconductor (n) Donor-atoms (P); n-type E
8
Laboratorium voor Lichttechnologie Acceptor-atoms (B); p-type Extrinsic semiconductor (p) E
9
Laboratorium voor Lichttechnologie +- Injection of free electrons in p-type and free holes in n-type p-n junction! pn
10
Laboratorium voor Lichttechnologie 3. Electrical characteristics
11
Laboratorium voor Lichttechnologie Diode characteristic Low, dc voltage Forward voltage dependent on bandgap of the semiconductor: AlGaInP: 2.95 V typ. InGaN: 3.42 V typ. Electrical characteristics
12
Laboratorium voor Lichttechnologie Electrical characteristics
13
Laboratorium voor Lichttechnologie 4. Optical characteristics
14
Laboratorium voor Lichttechnologie Photon energy (and colour) is determined by bandgap E g Rather monochromatic radiation Optical characteristics: spectrum
15
Laboratorium voor Lichttechnologie Peak wavelength λ p : from UV to IR Full Width at Half Maximum: from 20 to 50 nm Optical characteristics: spectrum
16
Laboratorium voor Lichttechnologie Optical characteristics: chromaticity CIE chromaticity Purity Dominant wavelength
17
Laboratorium voor Lichttechnologie Optical characteristics: chromaticity CIE chromaticity Additive mixing with wide colour gamut
18
Laboratorium voor Lichttechnologie Bandgap engineering to obtain an extensive range of wavelengths and colours: use of compound semiconductors Optical characteristics: colour
19
Laboratorium voor Lichttechnologie Compound Semiconductors
20
Laboratorium voor Lichttechnologie AlGaInP InGaN
21
Laboratorium voor Lichttechnologie Optical characteristics: white LEDs
22
Laboratorium voor Lichttechnologie Three or more LEDs of different Colors + The more colours one has to mix, the more control one has in producing white light with a high color rendering index. + Photons from each LED contribute directly to the light intensity, i.e. no conversion efficiencies have to be considered. + Extensive range of hue’s can be obtained - Optical control, coloured shadows
23
Laboratorium voor Lichttechnologie Osram 6 lead multiLED
24
Laboratorium voor Lichttechnologie Optical characteristics: Radiant/luminous Flux Φ (e) forward electrical current # recombinations # photons luminous flux
25
Laboratorium voor Lichttechnologie LED’s: current driven
26
Laboratorium voor Lichttechnologie Efficacy red: 55 lm/W (room temperature) Energy-efficiency: 24 % Losses Non-radiative recombination (heat) Internal reflections Optical characteristics: efficacy
27
Laboratorium voor Lichttechnologie Non-radiative recombination Temperature of the semiconductor junction increases!
28
Laboratorium voor Lichttechnologie Total Internal Reflection Substrate Active material absorption Partially reflected Totally reflected
29
Laboratorium voor Lichttechnologie Internal reflections 1. semiconductor- encapsulant 2. encapsulant-air
30
Laboratorium voor Lichttechnologie Optical characteristics: spatial Dependent on position of die and reflector shape of the external dome www.nichia.com
31
Laboratorium voor Lichttechnologie Secundary optics Optical characteristics: spatial
32
Laboratorium voor Lichttechnologie 5. Effect of Temperature
33
Laboratorium voor Lichttechnologie Effect of Temperature: luminous flux Increase of non-radiative recombination!
34
Laboratorium voor Lichttechnologie Effect of Temperature: peak wavelength and light flux Decrease of the bandgap, increase of wavelength!
35
Laboratorium voor Lichttechnologie Effect of temperature: chromaticity Chromaticity versus warm-up time
36
Laboratorium voor Lichttechnologie Effect of temperature: lumen maintenance http://www.lrc.rpi.edu/progra ms/solidstate/ongoingProject s.asp?ID=57
37
Laboratorium voor Lichttechnologie Thermal management
38
Laboratorium voor Lichttechnologie Thermal management 10 °C/W
39
Laboratorium voor Lichttechnologie Determination of junction temperature
40
Laboratorium voor Lichttechnologie 6. Photometry of LEDs Photometer/colorimeter or spectroradiometer
41
Laboratorium voor Lichttechnologie Photometer
42
Laboratorium voor Lichttechnologie Important errors in tails of eye sensitivity curve
43
Laboratorium voor Lichttechnologie Spectroradiometer Bandwidth: 5 nm
44
Laboratorium voor Lichttechnologie Photometry of LEDs: intensity Some LEDs have a very narrow radiation pattern (FWHM 2°) Large distance to detector and small detector aperture required. CIE 127 standardisation: “averaged LED intensity” at 316 mm (A) or 100 mm (B) distance and 1 cm 2 detector area.
45
Laboratorium voor Lichttechnologie Photometry of LEDs: luminous flux Reference light source required
46
Laboratorium voor Lichttechnologie Fast measurements: partial flux
47
Laboratorium voor Lichttechnologie 7. LED penetration into general lighting
48
Laboratorium voor Lichttechnologie LED penetration into General Lighting: main obstacles Luminous flux Efficacy Colour and flux maintenance Thermal management Reproducibility Price
49
Laboratorium voor Lichttechnologie LED penetration into General Lighting: obstacles : luminous flux (white) P(W)I(mA)Φ(lm) 0.070201.5
50
Laboratorium voor Lichttechnologie LED penetration into General Lighting: obstacles : luminous flux P(W)I(mA)Φ(lm) 1.235060 3.61000100 5.0700120 Luxeon
51
Laboratorium voor Lichttechnologie LED penetration into General Lighting: obstacles : luminous flux P(W)I(mA)Φ(lm) 4.7420108 262300567 86013300 “Chip on board” technology Lamina Ceramics, Osram Multiple LED package
52
Laboratorium voor Lichttechnologie LED penetration into General Lighting: obstacles : efficacy/ CRI
53
Laboratorium voor Lichttechnologie CRI (R a ) Test source Colour samples(8 of 14) Standard illuminant Colour coordinates
54
Laboratorium voor Lichttechnologie Low CRI and yet high colour preference? CRI and LED’s: subject of international research CIE TC 1-69 Colour Rendition by White Light Sources
55
Laboratorium voor Lichttechnologie Obstacles: efficacy BUT Lighting Systems Higher Light Output Ratio possible due to a higher directionality of the “naked” light source
56
Laboratorium voor Lichttechnologie Obstacles: efficacy BUT coloured applications LED /Halogen green traffic signal: efficiency (cd/W): 8 / 1
57
Laboratorium voor Lichttechnologie
58
LED penetration into General Lighting: obstacles : lumen maintenance LED lifetime is sometimes specified in MTBF (mean time between failure). Various LED manufacturers predict LED source life up to 100K hours “Lumen Maintenance” is even more important. End-of-Life specification: light output has dropped to 70% compared to the original light output: 50.000 hrs !
59
Laboratorium voor Lichttechnologie LED penetration into General Lighting: obstacles : thermal management - chip
60
Laboratorium voor Lichttechnologie LED penetration into General Lighting: obstacles : thermal management - luminaire Project 2.2 Californian Energy Commission
61
Laboratorium voor Lichttechnologie LED penetration into General Lighting: obstacles : reproducibility “binning”
62
Laboratorium voor Lichttechnologie LED penetration into General Lighting: obstacles : price
63
Laboratorium voor Lichttechnologie Pro and contra: pro Saturated colours, dynamic colour effects with a large colour gamut High efficiency for applications with coloured light (e.g. traffic lights) Liftetime up to 50 000 hours (70% definition) Vibration-proof Low voltage No mercury No UV and IR radiation Instantaneous switch-on Easy dimmable
64
Laboratorium voor Lichttechnologie Pro and contra: contra Reproducibility is difficult (semiconductor processing); binning (sorting by intensity, colour, forward voltage) is required Colour and intensity shift with temperature, driving current and life time Low output/device Low efficacy for white (but is improving) Price
65
Laboratorium voor Lichttechnologie www.lichttechnologie.be Instituut voor de Aanmoediging van Innovatie door Wetenschap en Technologie in Vlaanderen KaHo St.-Lieven Gebr. Desmetstraat 1 B-9000 GENT Tel: + 32 9 265 86 10 Peter.Hanselaer@kahosl.be
66
Laboratorium voor Lichttechnologie Laboratory for Light&Lighting Founded in 1997 with the support of IWT Vlaanderen (Flemish institute for the promotion of innovation in science and technology). Main activities: –Education –Scientific research –Supporting industrial developments
67
Laboratorium voor Lichttechnologie Topics Photovoltaics Lighting Optical design Appearance Measurement Facilities
68
Laboratorium voor Lichttechnologie Lighting Research: –Criteria efficient lighting –LED’s (PhD) Supporting industry –Groen Licht Vlaanderen: promotion of energy efficient lighting (Greenlight) –Shoplighting
69
Laboratorium voor Lichttechnologie Optical design Research: –Luminaire design with ray-tracing (PhD) Supporting industry –Secundary optics for LED clusters –Surface with uniform luminance
70
Laboratorium voor Lichttechnologie Appearance Research: –Gloss (PhD) –Colour rendering with LED’s Supporting industry –Automotive –Wood –Retro-reflection
71
Laboratorium voor Lichttechnologie Photovoltaics Research: –Spectral response –Light trapping in cells and modules Supporting industry –Stand-alone systems –Signalization
72
Laboratorium voor Lichttechnologie Measurement facilities 8/d spectral reflectance and transmittance Goniometer Spectrometers: VIS, UV, near IR Electrical characterization Bidirectional Scattering distribution Photometric/colorimetric camera LED integrating sphere
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.