Presentation is loading. Please wait.

Presentation is loading. Please wait.

Budowa reguł decyzyjnych z rozmytą granulacją wiedzy Zenon A. Sosnowski Wydział Informatyki Politechnika Białostocka Wiejska 45A, 15-351 Bialystok

Similar presentations


Presentation on theme: "Budowa reguł decyzyjnych z rozmytą granulacją wiedzy Zenon A. Sosnowski Wydział Informatyki Politechnika Białostocka Wiejska 45A, 15-351 Bialystok"— Presentation transcript:

1 Budowa reguł decyzyjnych z rozmytą granulacją wiedzy Zenon A. Sosnowski Wydział Informatyki Politechnika Białostocka Wiejska 45A, 15-351 Bialystok zenon@wi.pb.edu.pl

2 Agenda wprowadzenie drzewa decyzyjne (DT) zbiory rozmyte w granulacji atrybutów algorytm generowania kontekstowych DT przykład wnioski

3 Rozmyta sieć RETE The inference mechanism realizes a generalized modus ponens rule. if A then C CFr A' CFf ---------------------- C'CFc CFr is an uncertainty of the rule CFf is an uncertainty of the fact CFc is an uncertainty of the conclusion CFc = CFr * CFf

4 Fuzzy_Fuzzy

5 (defrule r1 (speed very fast) => (... )) (defrule r2 (speed slow) => (... )) SINGLE (LV speed) MULTIFIELD End of pattern activation rule r2 M.(slow) (attached) M.(very fast) (attached) (speed medium) - WME

6 Decicion Trees – An Overview used to solve classification problems structure of problem - attributes - each attribute assumes a finite number values - finite number of discrete classes entropy-based optimization criterion architecture of decision tree: nodes – attributes, edges – values of attributes

7 Coping with Continuous Attributes Decision trees require finite-valued attributes What if attributes are continuous ? Attributes need to be discretrized Options: - discretize each attribute separately (uniform and nonuniform) - discretize all attributes (clustering )

8 Quantization of attributes through clustering Fuzzy Clustering Context-based fuzzy clustering

9 Fuzzy Clustering (FCM) versus Context-Based FCM (cFCM) Fuzzy clustering: objective function and its iteraive optimization Context-base fuzzy clustering: - objective function minimized iteratively - continuous classification variable granulated with the use of linguistic labels

10 Context-Based Fuzzy Clustering Given: data {x k,y k }, k=1,2,…,N, number of clusters (c), distance function ||.||, fuzzy set of context A defined over y k Constrained-based optimization of objective function subject to

11 From context fuzzy set A to the labeling of data to be clustered

12 Context-Based Fuzzy Clustering: An Iterative Optimization Process Given: The number of clusters (c). Select the distance function ||.||, termination criterion e (>0) and initialize partition matrix U U. Select the value of the fuzzification parameter “m” (the default is m=2.0) 1.Calculate centers (prototypes) of the clusters i=1, 2,..., c 2. Update partition matrix i=1, 2,..., c, j=1, 2,..., N 3. Compare U' to U, if termination criterion ||U’ - U|| <e is satisfied then stop, else return to step (1) and proceed with computing by setting up U equal to U' Result: partition matrix and prototypes

13 Information Granules in the Development of Decision Trees define contexts (fuzzy sets) for continuous classivication variable cluster data for each context project prototypes on the individual axes – this leads to their discretization carry out the standard ID-3 algorithm W. Pedrycz, Z.A. Sosnowski, „The designing of decision trees in the framework of granular data and their application to software quality models”, Fuzzy Sets & Sysytems, vol. 124, (2001), p. 271-290

14 Fuzzy Sets of Contexts: Two Approaches subjective selection depending on the classification problem supported by statistical relevance (σ-count of fuzzy contexts)

15 Constructing linguistic terms – classes (thin line) and their induced interval- valued counterparts (solid line)

16 C - Fuzzy Decision Trees W. Pedrycz, Z.A. Sosnowski, „C-Fuzzy Decision Trees”, IEEE Transactions on Systems, Man and Cybernetics, Part C, Vol. 35, No 4, 2005, p. 498-511.

17 Architecture of the cluster-based decision tree cluster all data set X repeat allocate elements of X to each cluster choose the node with the highest value of the spliting criterion cluster data at selected node until termination criterion is fulfield

18 Node splitting criterion Node of the tree Ni = where: Xi = { x(k) | ui(x(k)) > uj(x(k))} Yi = {y(k)| x(k) ε Xi} Ui = [ui(x(1)) ui(x(2)) … ui(x(N))]

19 Stopping criterion (structurability index)

20 C-fuzzy tree in the classification (prediction) mode assign x to class w i if u i (x) exceeds the values of the membership in all remaining clusters

21 Experiments Data sets from the UCI repository of Machine Learning Databases (http://www.ics.uci.edu)http://www.ics.uci.edu Auto-Mpg Pima-diabetes Ionosphere Hepatitis Dermatology

22 Hepatitis data Type of tree and its structural parameters Error: Training data Error: Testing dataNumber of nodes C4.5 rev. 86.46 % (average) 0.85 % (st. deviation) 43.86 % (average) 7.05 % (st. deviation) 45 (average) 7.87 (st. deviation) C-decision tree c=2 clusters, 6 iterations 17.58 % (average) 3.34 % (st. deviation) 36.13 % (average) 0.08 % (st. deviation) 12 C-decision tree c=9 clusters, 3 iterations 24.84 % (average) 5.21 % (st. deviation) 34.19 % (average) 3.68 % (st. deviation) 27

23 Dermatology data Type of tree and its structural parameters Error: Training data Error: Testing dataNumber of nodes C4.5 rev. 81.52 % (average) 0.61 % (st. deviation) 5,98% (average) 3.50% (st. deviation) 18.6 (average) 4.34 (st. deviation) C-decision tree C=11 clusters, 1 iterations 7.0 % (average) 1,68 % (st. deviation) 4.9 % (average) 3.56 % (st. deviation) 11 C-decision tree c=7 clusters, 1 iterations 6.1 % (average) 1.15 % (st. deviation) 5.7 % (average) 2.47 % (st. deviation) 7

24 Context-based Fuzzy Clustered- oriented Decision Trees (CFCDT).....

25 Architecture of the Context-based Fuzzy Clustered-oriented Decision Tree define contexts (fuzzy sets) for classivication variable for each context do –cluster (cFCM) X i (data set of i-th context) –repeat –allocate elements of X i to each cluster –choose the node with the highest value of the spliting criterion –cluster (cFCM) data at selected node until termination criterion is fulfield enddo

26 Problem Implementation issues: high complexity –> grid or cluster computing agregation -> testing of different appraches

27 Dziękuję za uwagę


Download ppt "Budowa reguł decyzyjnych z rozmytą granulacją wiedzy Zenon A. Sosnowski Wydział Informatyki Politechnika Białostocka Wiejska 45A, 15-351 Bialystok"

Similar presentations


Ads by Google