Download presentation
Presentation is loading. Please wait.
Published byClarence Elliott Modified over 9 years ago
1
Experiments With Entangled Photons Paulo Henrique Souto Ribeiro Instituto de Física - UFRJ Summer School of Optics Concépcion January/2010
2
Quantum Optics Group at IF/UFRJ
3
Group members Experiments: Prof. Paulo Henrique Souto Ribeiro Prof. Stephen Patrick Walborn Theory: Prof. Luiz Davidovich Prof. Nicim Zagury Prof. Ruynet Matos Filho Prof. Fabricio Toscano Msc and PhD students: Adriana Auyuanet Larrieu, Adriano H. de Oliveira Aragão, Bruno de Moura Escher, Bruno Taketani, Daniel Schneider Tasca, Gabriel Horacio Aguilar, Osvaldo Jimenez farias, Gabriela Barreto Lemos, Rafael Chaves.
4
UFRJ UFMG USP-SÃO PAULO UFAL UFF
5
Outline: Part I -Simultaneity in parametric down- conversion -Violation of a classical inequality -Consequences of simultaneity: i)localized one-photon state; ii)the Hong-Ou-Mandel interferometer iii) measurement of the tunneling time Part II -Polarization entanglement -Bell’s inequalities -Entanglement measurement Part III -Entanglement dynamics -Kraus operators -Entanglement sudden death -Process tomography -Evolution of entanglement Part VI -Spatial correlations -The transfer of the angular spectrum -Continuous variables etanglement- EPR paradox -Non-gaussian entanglement -Non-local optical vortex
6
Part I - Simultaneity in parametric down-conversion - Violation of a classical inequality - Consequences of simultaneity: i) localized one-photon state; ii) the Hong-Ou-Mandel interferometer iii) measurement of the tunneling time
7
Parametric Down-conversion Espontaneous emission Stimulated emission Twin Photons
8
Parametric Down-conversion
9
Observation of simultaneity
11
Parametric down-conversion: quantum state Time evolution Time evolution operator Time integral
12
Simultaneity in parametric down-conversion Quantum state for weak interaction
13
Simultaneity in parametric down-conversion Quantum state including some approximations
14
Simultaneity in parametric down-conversion Calculation of expectation values Electric field operator Intensity Coincidence
15
Simultaneity in parametric down-conversion: very simple view
16
Simultaneity in parametric down-conversion: very simple view Quantum state: simple version Electric field operator: plane wave, almost monochromatic Coincidence
17
Simultaneity in parametric down-conversion: very simple view Plane wave pumping field
18
Coincidence detection
20
Measurement of time delays =168ps =185ps
21
Simultaneity in parametric down-conversion: very simple view + detection filters Plane wave pumping field
22
Simultaneity in parametric down-conversion: very simple view + detection filters Interference filter: typical = 10nm, = 3.8 x 10 13 Hz, t = 82 fs << 100ps
23
Simultaneity in parametric down-conversion: very simple view + timing resolution
24
Localized one photon state
26
Violation of a classical inequality
28
Hong, Ou and Mandel Interferometer
29
Hong, Ou and Mandel Interferometer: single mode approach Beam splitter Input-output relations
30
Hong, Ou and Mandel Interferometer: single mode approach Beam splitter Two-photon input state Coincidence probability
31
Hong, Ou and Mandel Interferometer
32
Single-photon tunneling time
33
Part II - Polarization entanglement - Bell’s inequalities - Entanglement measurement
34
Polarization entanglement: generation Kwiat et al. PRL 75, 4337 (1995)
35
Kwiat et al. PRA 60, R773 (1999) White et al. PRL 83, 3103 (1999) Polarization entanglement: generation
36
Kwiat et al. PRA 60, R773 (1999) White et al. PRL 83, 3103 (1999) Polarization entanglement: generation
37
Mixed state Pure entangled state Mixed states and entangled states
38
Detection of entanglement: violation of the Bell inequality
39
Bell-CHSH inequality Bell inequality and Bell states
40
Bell states for the photon polarization Coincidence rate for + : Bell inequality and Bell states
41
Bell states for the photon polarization Bell inequality and Bell states Coincidence rate for + :
42
Maximal violation Bell inequality and Bell states
43
Maximal violation Bell inequality and Bell states
44
Maximal violation Bell inequality and Bell states
45
Violation of a Bell inequality - Detects but does not quantify the entanglement properly - Some entangled states do not violate the Bell inequality - Valid for dichotomic or dichotomized systems Bell inequality and entanglement
46
Take a set of measurements : Reconstruction of the density matrix Quantum state tomography
49
With one can compute all quantities related to the system
50
Concurrency: Direct measurement of entanglement
51
Mintert, Kus, and Buchleitner, Phys. Rev. Lett. 95 260502 (2005). Direct measurement of entanglement using copies of states
52
Direct measurement of entanglement: pure states Pure state Two copies Maximally entangled state Two copies
53
Experiment with entangled photons
54
Two copies of a state in a single photon Polarization state
55
Linear momentum state Two copies of a state in a single photon
56
Simultaneous entanglement in polarization and linear momentum Two copies of a state in a single photon
57
Bell state projection Bell states combining momentum and polarization
58
C-NOT with a SAGNAC interferometer
59
Spatial rotations with cilyndrical lenses
61
Direct measurement of entangled with two copies
62
S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich, F. Mintert, A. Buchleitner, Nature 440 1022 (2006) Direct measurement of entangled with two copies
63
S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich, F. Mintert, A. Buchleitner, Nature 440 1022 (2006) Direct measurement of entangled with two copies
64
Part III -Entanglement dynamics -Kraus operators -Entanglement sudden death -Process tomography -Evolution of entanglement
65
Entanglement dynamics T. Yu, J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004). T. Yu, J. H. Eberly, Phys. Rev. Lett. 97, 140403 (2006).
66
Amplitude decay channel Quantum channel and Kraus map
67
Operadores de Kraus para o canal de amplitude Quantum channel and Kraus operators
68
Amplitude decay channel for one photon polarization
88
Kwiat et al. PRA 60, R773 (1999) White et al. PRL 83, 3103 (1999) Polarization entangled state
89
M. P. Almeida et al., Science 316, 579 (2007) Experimental observation of the entanglement sudden death
90
M. P. Almeida et al., Science 316, 579 (2007) Experimental observation of the entanglement sudden death
91
Process tomography
92
Reconstruction of the Kraus operators
93
T. Konrad et al., Nature Physics 4, 99 (2008). A dynamical law for the entanglement
98
O. Farias et al., Science 324, 1414 (2009) A dynamical law for the entanglement
99
O. Farias et al., Science 324, 1414 (2009) A dynamical law for the entanglement: experimental test
100
A dynamical law for the entanglement: generalization for mixed states T. Konrad et al., Nature Physics 4, 99 (2008).
101
A dynamical law for the entanglement: generalization for mixed states
102
A dynamical law for the entanglement: generalization for mixed states
103
A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972) How to find $' A dynamical law for the entanglement: generalization for mixed states
104
O. Farias et al., Science 324, 1414 (2009) A dynamical law for the entanglement: generalization for mixed states experimental test
105
Part VI -Spatial correlations -The transfer of the angular spectrum -Continuous variables etanglement- EPR paradox -Non-gaussian entanglement -Non-local optical vortex
106
Spatial correlations in the far field
110
Spatial anti-bunching: non-classical behavior Cauchy-Swartz inequality Homogeneity and stationarity
111
Spatial anti-bunching: non-classical behavior
112
S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi Phys. Rev. Lett. 88, 120401 (2002). Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. Zoller Phys. Rev. Lett. 84, 2722 (2000). Lu-Ming Duan, G. Giedke, J. I. Cirac, and P. Zoller Phys. Rev. Lett. 84, 2722 (2000). Inseparability DGCZ criterion MGVT criterion
113
Inseparability
114
Inseparability:proof
118
Inseparability criterion DGCZ criterion
119
Inseparability
120
Inseparability:proof
124
MGVT criterion
125
Inseparability
129
Non-gaussian entanglement Gaussian states are completely characterized by the second order momenta: Then, DGCZ, MGVT and other criteria based on second order momenta are non optimal for non-gaussian states.
130
Higher order criterion E. Shchukin and W. Vogel Inseparability criteria for continuous bipartite quantum states. Phys Rev Lett. 95, 230502 (2005) To the second order: a and b are annihillation operators for modes a and b.
131
Higher order criterion E. Shchukin and W. Vogel Inseparability criteria for continuous bipartite quantum states. Phys Rev Lett. 95, 230502 (2005) The state has a positive partial transpose, if and only if all principal minors are non-negative.
132
Gaussian and non-gaussian states Production of a gaussian state with parametric down-conversion
133
Gaussian and non-gaussian states Production of a non-gaussian state with parametric down-conversion
134
Higher order criterion We found a non-gaussian state that does not violate any second order criterion: According to R. Simon Phys. Rev. Lett. 84, 2726 (2000), if is satisfied, no second order criterion is violated. For 0.57 < s/t < 1.73 satisfies the inequality.
135
Higher order criterion However it gives the negative minor below for the higher order criterion
136
Isomorphism between a multimode single photon field and a single mode multiphoton field The inequality is violated for r=1/t and 0.68 < s/t < 1.53
137
Experimental observation of genuine non-gaussian entanglement Quantum entanglement beyond Gaussian criteria R. M. Gomes, A. Salles, F. Toscano, P. H. Souto Ribeiro and S. P. Walborn Proc. Nat. Acad. Sci. 106, 21517-21520(2009)
138
Experimental observation of genuine non-gaussian entanglement Quantum entanglement beyond Gaussian criteria R. M. Gomes, A. Salles, F. Toscano, P. H. Souto Ribeiro and S. P. Walborn Proc. Nat. Acad. Sci. 106, 21517-21520(2009)
139
Experimental observation of genuine non-gaussian entanglement Quantum entanglement beyond Gaussian criteria R. M. Gomes, A. Salles, F. Toscano, P. H. Souto Ribeiro and S. P. Walborn Proc. Nat. Acad. Sci. 106, 21517-21520(2009)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.