Download presentation
Presentation is loading. Please wait.
Published byBruno Kelly Marsh Modified over 9 years ago
1
Steven Christe 1,, Matt Earnshaw 2, Keith Hughitt 1, Jack Ireland 1, Florian Mayer 3, Albert Shih 1, Alex Young 1 1 NASA GSFC 2 Imperial College London 3 Vienna University of Technology Florian Mayer
2
What is Python? Introduction to Python Scientific Python NumPy Matplotlib SciPy Python in solar physics
3
General-purpose Object-oriented (disputed) Cross-platform Windows Mac OS Linux Other Unices (FreeBSD, Solaris, etc.) High-level
4
Internet companies Google Rackspace Games Battlefield 2 Civilization 4 Graphics Walt Disney Science NASA ESRI
5
Easy Comprehensive standard library (“batteries included”) Quality does vary, though. Good support for scientific tasks Permissive open-source license On the downside: Slower, but ways to speed up
6
PYTHONIDL Proprietary software License cost Small community Cumbersome plotting Solar software Free open-source software Without cost General purpose Good plotting No solar software
7
Implementation started 1989 by Guido van Rossum (BDFL) 2.0 appeared 2000 Garbage collection Unicode 3.0 appeared 2008
8
Astronomy Artificial intelligence & machine learning Bayesian Statistics Biology (including Neuroscience) Dynamical systems Economics and Econometrics Electromagnetics Electrical Engineering Geosciences Molecular modeling Signal processing Symbolic math, number theory
9
pyFITS – read FITS files pyRAF – run IRAF tasks pywcs pyephem – compute positions of objects in space spacepy (space sciences, just released) Planned standard library AstroPy
10
Beautiful is better than ugly. Explicit is better than implicit. Simple is better than complex. Readability counts. There should be one – and preferably only one – obvious way to do it. Although that way may not be obvious at first unless you're Dutch. >>> import this
11
Brief introduction into Python
12
Infix notation operations Python 2 defaults to floor division More mathematical operations in math Complex math in cmath
13
Integers are arbitrary size. Floats are platform doubles. decimal module for arbitrary precision decimal numbers fractions module for fractions
14
STRINGS / BYTES "foo" Store bytes Useful for binary data UNICODE u"foo" Store unicode codepoints Useful for text Behave as expected for multibyte characters
15
[1, 2, 3, 4] Mutable Multiple records (1, u"foo") Immutable Different objects describing one record
16
if/elif/else for-loop break continue else while-loop pass
17
Default arguments are evaluated once at compile time! lambda alternative syntax for definition of trivial functions Functions are objects, too!
18
Unordered key-value mappings Approx. O(1) lookup and storage Keys must be immutable (hashable)
19
Unordered collection of unique objects Approx. O(1) membership test Members must be immutable (hashable)
20
Classes Explicit self Multiple inheritance Also in IDL 8; no escaping it
21
try / except / else raise Exceptions inherit from Exception
22
PYTHON 2.7 Print statement String / Unicode Floor division Relative imports Lists PYTHON 3.2 Print function Bytes / String Float Division Absolute imports Views Tons of other changes http://bit.ly/newpy3
23
Fundamental package for science in Python Multidimensional fixed-size, homogenous arrays Derived objects: e.g. matrices More efficient Less code
24
Python list arange linspace / logspace ones / zeros / eye / diag random
25
Absence of explicit looping Conciseness – less bugs Closer to mathematical notation More pythonic. Also possible for user functions
26
Expansion of multidimensional arrays Implicit element-by-element behavior
33
Boolean area Integer area
34
TypeRemarksCharacter code bytecompatible: C char'b' shortcompatible: C short'h' intccompatible: C int'i' int_compatible: Python int'l' longlongcompatible: C long long'q' intp large enough to fit a pointer 'p' int88 bits int1616 bits int3232 bits int6464 bits
35
TypeRemarksCharacter code ubytecompatible: C u. char'B' ushortcompatible: C u. short'H' uintccompatible: C unsigned int'I' uintcompatible: Python int'L' ulonglongcompatible: C long long'Q' uintp large enough to fit a pointer 'P' uint88 bits uint1616 bits uint3232 bits uint6464 bits
36
TypeRemarksCharacter code half 'e' singlecompatible: C float'f' doublecompatible: C double float_compatible: Python float'd' longfloatcompatible: C long float'g' float1616 bits float3232 bits float6464 bits float9696 bits, platform? float128128 bits, platform?
37
TypeRemarksCharacter code csingle 'F' complex_ compatible: Python complex 'D' clongfloat 'G' complex64two 32-bit floats complex128two 64-bit floats complex192 two 96-bit floats, platform? complex256 two 128-bit floats, platform?
38
NumPy: weave.blitz (fast NumPy expressions) NumPy: weave.inline (inline C/C++) f2py (interface Fortran) Pyrex/Cython (python-like compiled language)
39
2D plotting library Some 3D support Publication-quality figures “Make easy things easy and hard things possible” Configurable using matplotlibrc
40
import numpy as np from matplotlib import pyplot as plt t = np.linspace(0, 2, 200) s = np.sin(2*pi*t) plt.plot(t, s, linewidth=1.0) plt.xlabel( 'time (s)' ) plt.ylabel( 'voltage (mV)' ) plt.title( 'About as simple as it gets, folks' ) plt.grid(True) plt.show()
41
import numpy as np from matplotlib import pyplot as plt def f(t): s1 = np.cos(2*pi*t) e1 = np.exp(-t) return np.multiply(s1,e1) t1 = np.arange(0.0, 5.0, 0.1) t2 = np.arange(0.0, 5.0, 0.02) t3 = np.arange(0.0, 2.0, 0.01) plt.subplot(211) l = plot(t1, f(t1), 'bo', t2, f(t2), 'k--', markerfacecolor= 'green' ) plt.grid(True) plt.title( 'A tale of 2 subplots' ) plt.ylabel( 'Damped oscillation' ) plt.subplot(212) plt.plot(t3, np.cos(2*pi*t3), 'r.' ) plt.grid(True) plt.xlabel( 'time (s)' ) plt.ylabel( 'Undamped' ) plt.show()
42
import numpy as np import matplotlib.path as mpath import matplotlib.patches as mpatches import matplotlib.pyplot as plt Path = mpath.Path fig = plt.figure() ax = fig.add_subplot(111) pathdata = [ (Path.MOVETO, (1.58, -2.57)), (Path.CURVE4, (0.35, -1.1)), (Path.CURVE4, (-1.75, 2.0)), (Path.CURVE4, (0.375, 2.0)), (Path.LINETO, (0.85, 1.15)), (Path.CURVE4, (2.2, 3.2)), (Path.CURVE4, (3, 0.05)), (Path.CURVE4, (2.0, -0.5)), (Path.CLOSEPOLY, (1.58, -2.57)), ] codes, verts = zip(*pathdata) path = mpath.Path(verts, codes) patch = mpatches.PathPatch(path, facecolor= 'red', edgecolor= 'yellow', alpha=0.5) ax.add_patch(patch) x, y = zip(*path.vertices) line, = ax.plot(x, y, 'go-' ) ax.grid() ax.set_xlim(-3,4) ax.set_ylim(-3,4) ax.set_title( 'spline paths' ) plt.show()
43
from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import (LinearLocator, FixedLocator, FormatStrFormatter) import matplotlib.pyplot as plt import numpy as np fig = plt.figure() ax = fig.gca(projection= '3d' ) X = np.arange(-5, 5, 0.25) Y = np.arange(-5, 5, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X**2 + Y**2) Z = np.sin(R) surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.jet, linewidth=0, antialiased=False) ax.set_zlim3d(-1.01, 1.01) ax.w_zaxis.set_major_locator(LinearLocator(10)) ax.w_zaxis.set_major_formatter(FormatStrFormatter( '%.03f' )) fig.colorbar(surf, shrink=0.5, aspect=5) plt.show()
44
import numpy as np from matplotlib import pyplot as plt from matplotlib.patches import Ellipse NUM = 250 ells = [ Ellipse(xy=rand(2)*10, width=np.rand(), height=np.rand(), angle=np.rand()*360) for i in xrange(NUM)] fig = plt.figure() ax = fig.add_subplot(111, aspect= 'equal' ) for e in ells: ax.add_artist(e) e.set_clip_box(ax.bbox) e.set_alpha(rand()) e.set_facecolor(rand(3)) ax.set_xlim(0, 10) ax.set_ylim(0, 10) plt.show()
47
Statistics Optimization Numerical integration Linear algebra Fourier transforms Signal processing Image processing ODE solvers Special functions And more.
48
Three phases Glass sample – light grey Bubbles – black Sand grains – dark grey Determine Fraction of the sample covered by these Typical size of sand grains or bubbles
49
1. Open image and examine it 2. Crop away panel at bottom Examine histogram 3. Apply median filter 4. Determine thresholds 5. Display colored image 6. Use mathematical morphology to clean the different phases 7. Attribute labels to all bubbles and sand grains Remove from the sand mask grains that are smaller than 10 pixels 8. Compute the mean size of bubbles.
50
Spatially aware maps Read FITS files RHESSI SDO/AIA EIT TRACE LASCO standard color tables and hist equalization basic image coalignment VSO HEK
51
Spatially aware array NumPy array Based on SolarSoft Map. MapCube
52
Two APIs Legacy API (tries to mimic IDL vso_search) New API based on boolean operations
53
Create VSO queries from HER responses WIP: Plot HER events over images
55
Use it! File feature requests Express opinion on the mailing list / in IRC File bug reports Contribute documentation Contribute code
56
Website: http://sunpy.orghttp://sunpy.org Mailing list: http://bit.ly/sunpy-forumhttp://bit.ly/sunpy-forum IRC: #sunpy on irc.freenode.net Git code repository: https://github.com/sunpy/sunpy https://github.com/sunpy/sunpy
57
Email: florian.mayer@bitsrc.orgflorian.mayer@bitsrc.org IRC: __name__ in #sunpy on freenode XMPP: segfaulthunter@jabber.ccc.desegfaulthunter@jabber.ccc.de
58
SciPy: http://scipy.orghttp://scipy.org Astronomical modules: http://bit.ly/astropyhttp://bit.ly/astropy Science modules: http://bit.ly/sciencepyhttp://bit.ly/sciencepy NumPy/IDL: http://hvrd.me/numpy-idlhttp://hvrd.me/numpy-idl Python for interactive data analysis: http://bit.ly/pydatatut http://bit.ly/pydatatut SciPy lecture notes: http://bit.ly/scipylechttp://bit.ly/scipylec This talk: http://graz-talk.bitsrc.orghttp://graz-talk.bitsrc.org SunPy doc: http://sunpy.org/doc/http://sunpy.org/doc/
59
Steven Christe 1, Matt Earnshaw 2 Keith Hughitt 1 Jack Ireland 1 Florian Mayer 3 Albert Shih 1 Alex Young 1 1 NASA GSFC 2 Imperial College London 3 Vienna University of Technology Thanks to
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.