Download presentation
Presentation is loading. Please wait.
Published byGervais Baldwin Modified over 9 years ago
1
References [1] A. M. Rao, P. Zhou, K-A. Wang, G. T. Hager, J. M. Holden, Y. Wang, W-T. Lee, X-X. Bi, P. C. Eklund, D. S. Cornett, M. A. Duncan, I. J. Amster, Science 259, 955 (1993) [2] T. Pusztai, G. Oszlányi, G. Faigel, K. Kamarás, L. Gránásy, S. Pekker, Solid State Commun. 111, 595 (1999) [3] S. Pekker, K. Kamarás, É. Kováts, T. Pusztai, G. Oszlányi, Synthetic Metals 121, 1109 (2001) [4] S. Pekker, É. Kováts, K. Kamarás, T. Pusztai, G. Oszlányi, Synthetic Metals 133-134, 685 (2001) [5] B. Burger, J. Winter, H. Kuzmany, Z. Phys B 101, 227 (1996) [6] O. F. Sankey, D. J. Niklewski, Phys. Rev. B 40, 3979 (1989) Measured and calculated MidIR spectra Photopolymer contains dimer, but other oligomers are present MidIR: assignment of oligomer peaks not conclusive FarIR: fewer lines + no C 60 lines No interball modes 30-200 cm -1 Assignment of photopolymer spectrum with dimer, triangle and rectangle Unassigned peaks: insoluble oligomers + small amount of other trimers and tetramers Measured and calculated FarIR spectra calc. rectangle calc. triangle exp. photopolymer exp. dimer Conclusions A g (2): 5 cm -1 / cycloadditional bond No interball modes in IR 30-200 cm -1 FarIR more informative for assignment than MidIR Photopolymer contains monomer + dimer + triangle + rectangle + other oligomers Measurements Raman: Renishaw System 1000B microscope + 785nm laser further polymerization avoided MIR: KBr pellet in Bruker IFS28 FIR: pure photopolymer pellet @ LHe (4 K) in Bruker IFS 113v Weak lines seensharper lines Calculations Method: QMD (quantum molecular dynamics) [6] local pseudoatomic orbitals, minimal basis best results: 200-600 cm -1 (FarIR): with 1.05 uniform scaling 2% error intensities not reliable Molecules: triangle: most possible (C 60 ) 3 rectangle: most possible (C 60 ) 4 Measured A g (2) modes 5 cm -1 / cycloadditional bond Photopolymer contains: C 60 + (C 60 ) 2 + (C 60 ) 3 + higher oligomers Vibrational spectroscopy of C 60 photopolymer G. Klupp*, K. Kamarás, É. Kováts, S. Pekker, T. Pusztai Research Institute for Solid State Physics and Optics, P. O. Box 49, Budapest, H 1525, Hungary, *email: klupp@szfki.hu Z.-T. Zhu †, V. C. Long ‡, J. L. Musfeldt § Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902 G. B. Adams, J. B. Page Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287 Funding: OTKA T034198, OTKA T032613, NATO PST.CLG.977404 Present addresses: † Department of Material Science and Engineering, Cornell University, Ithaca, NY 14853 ‡ Department of Physics and Astronomy, Colby College, Waterville, ME 04901 § Department of Chemistry, University of Tennessee, Knoxville, TN 37996 Illumination of C 60 + saturated C 60 solution with 2*23W at 320-360K for 40 days C 60 + (C 60 ) 2 + soluble (C 60 ) n>2 + insoluble (C 60 ) n>2 Repeated extraction with toluene solid photopolymer with less C 60, (C 60 ) 2 solution of C 60 + (C 60 ) 2 HPLC separation of the solution (C 60 ) 2, 99.3% purity For the preparation of trimer see poster of É. Kováts Preparation Introduction Monomer + Dimer + Trimers (5 possible structures) + Tetramers (17 possible structures) + Higher oligomers (insolubes) Photopolymer = [1], [2], [3] … a = 13.93 – 14.05 Å average ~2 cycloadditional bonds / C 60 unit [2], [4] Different preparation conditions different ratio of the compounds [3], [5]
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.