Download presentation
Presentation is loading. Please wait.
Published byDenis Montgomery Modified over 9 years ago
1
Parallel Programming AMANO, Hideharu
2
Parallel Programming Message Passing PVM MPI Shared Memory POSIX thread OpenMP CUDA/OpenCL Automatic Parallelizing Compilers
3
Message passing ( Blocking: randezvous ) Send Receive Send Receive
4
Message passing ( with buffer ) Send Receive Send Receive
5
Message passing ( non-blocking ) Send Receive Other Job
6
PVM (Parallel Virtual Machine) A buffer is provided for a sender. Both blocking/non-blocking receive is provided. Barrier synchronization
7
MPI (Message Passing Interface) Superset of the PVM for 1 to 1 communication. Group communication Various communication is supported. Error check with communication tag.
8
Programming style using MPI SPMD (Single Program Multiple Data Streams) Multiple processes executes the same program. Independent processing is done based on the process number. Program execution using MPI Specified number of processes are generated. They are distributed to each node of the NORA machine or PC cluster.
9
Communication methods Point-to-Point communication A sender and a receiver executes function for sending and receiving. Each function must be strictly matched. Collective communication Communication between multiple processes. The same function is executed by multiple processes. Can be replaced with a sequence of Point-to-Point communication, but sometimes effective.
10
Fundamental MPI functions Most programs can be described using six fundamental functions MPI_Init() … MPI Initialization MPI_Comm_rank() … Get the process # MPI_Comm_size() … Get the total process # MPI_Send() … Message send MPI_Recv() … Message receive MPI_Finalize() … MPI termination
11
Other MPI functions Functions for measurement MPI_Barrier() … barrier synchronization MPI_Wtime() … get the clock time Non-blocking function Consisting of communication request and check Other calculation can be executed during waiting.
12
An Example 1: #include 2: #include 3: 4: #define MSIZE 64 5: 6: int main(int argc, char **argv) 7: { 8: char msg[MSIZE]; 9: int pid, nprocs, i; 10: MPI_Status status; 11: 12: MPI_Init(&argc, &argv); 13: MPI_Comm_rank(MPI_COMM_WORLD, &pid); 14: MPI_Comm_size(MPI_COMM_WORLD, &nprocs); 15: 16: if (pid == 0) { 17: for (i = 1; i < nprocs; i++) { 18: MPI_Recv(msg, MSIZE, MPI_CHAR, i, 0, MPI_COMM_WORLD, &status); 19: fputs(msg, stdout); 20: } 21: } 22: else { 23: sprintf(msg, "Hello, world! (from process #%d)\n", pid); 24: MPI_Send(msg, MSIZE, MPI_CHAR, 0, 0, MPI_COMM_WORLD); 25: } 26: 27: MPI_Finalize(); 28: 29: return 0; 30: }
13
Initialize and Terminate int MPI_Init( int *argc, /* pointer to argc */ char ***argv /* pointer to argv */ ); mpi_init(ierr) integer ierr ! return code The attributes from command line must be passed directly to argc and argv. int MPI_Finalize(); mpi_finalize(ierr) integer ierr ! return code
14
Commincator functions It returns the rank (process ID) in the communicator comm. int MPI_Comm_rank( MPI_Comm comm, /* communicator */ int *rank /* process ID (output) */ ); mpi_comm_rank(comm, rank, ierr) integer comm, rank integer ierr ! return code It returns the total number of processes in the communicator comm. int MPI_Comm_size( MPI_Comm comm, /* communicator */ int *size /* number of process (output) */ ); mpi_comm_size(comm, size, ierr) integer comm, size integer ierr ! return code Communicators are used for sharing commnication space among a subset of processes. MPI_COMM_WORLD is pre-defined one for all processes.
15
MPI_Send It sends data to process “dest”. int MPI_Send( void *buf, /* send buffer */ int count, /* # of elements to send */ MPI_Datatype datatype, /* datatype of elements */ int dest, /* destination (receiver) process ID */ int tag, /* tag */ MPI_Comm comm /* communicator */ ); mpi_send(buf, count, datatype, dest, tag, comm, ierr) buf(*) integer count, datatype, dest, tag, comm integer ierr ! return code Tags are used for identification of message.
16
MPI_Recv int MPI_Recv( void *buf, /* receiver buffer */ int count, /* # of elements to receive */ MPI_Datatype datatype, /* datatype of elements */ int source, /* source (sender) process ID */ int tag, /* tag */ MPI_Comm comm, /* communicator */ MPI_Status /* status (output) */ ); mpi_recv(buf, count, datatype, source, tag, comm, status, ierr) buf(*) integer count, datatype, source, tag, comm, status(mpi_status_size) integer ierr ! return code The same tag as the sender’s one must be passed to MPI_Recv. Set the pointers to a variable MPI_Status. It is a structure with three members: MPI_SOURCE, MPI_TAG and MPI_ERROR, which stores process ID of the sender, tag and error code.
17
datatype and count The size of the message is identified with count and datatype. MPI_CHAR char MPI_INT int MPI_FLOAT float MPI_DOUBLE double … etc.
18
Compile and Execution % icc –o hello hello.c -lmpi % mpirun –np 8./hello Hello, world! (from process #1) Hello, world! (from process #2) Hello, world! (from process #3) Hello, world! (from process #4) Hello, world! (from process #5) Hello, world! (from process #6) Hello, world! (from process #7)
19
POSIX Thread Standard API on Linux for controlling threads. Portable Operating System Interface Thread handling pthread_create(); pthread_join(); pthread_exec(); Synchronization mutex pthread_mutex_lock(); pthread_mutex_trylock(); pthread_mutex_unlock(); Condition variable: Semaphore pthread_cond_signal(); pthread_cond_wait(); etc.
20
OpenMP #include int main() { pragma omp parallel { int tid, npes; tid = omp_get_thread_num(); npes = omp_get_num_threads(); printf(“Hello World from %d of %d\n”, tid, npes) } return 0; } Multiple threads are generated by using pragma. Variables declared globally can be shared.
21
Convenient pragma for parallel execution #pragma omp parallel { #pragma omp for for (i=0; i<1000; i++){ c[i] = a[i] + b[i]; } The assignment between i and thread is automatically adjusted in order that the load of each thread becomes even.
22
CUDA/OpenCL CUDA is developed for GPGPU programming. SPMD(Single Program Multiple Data) 3-D management of threads 32 threads are managed with a Warp SIMD programming Architecture dependent memory model OpenCL is standard language for heterogeneous accelerators.
23
Heterogeneous Programming with CUDA … Host Device … Host Device Serial Code Parallel Kernel KernelA(args); Serial Code Parallel Kernel KernelB(args);
24
Threads and thread blocks 01234567 Thread Block 0 threadID … float x = input[threadID]; float y=func(x); output[threadID]=y; … 01234567 Thread Block 1 … float x = input[threadID]; float y=func(x); output[threadID]=y; … 01234567 Thread Block N-1 … float x = input[threadID]; float y=func(x); output[threadID]=y; … … Kernel = grid of thread blocks each thread executes the same code Threads in the same block may synchronize with barriers. _syncthreads(); Thread blocks cannot synchronize -> Execution is depending on machines.
25
Memory Hierarchy Thread Per-thread Local memory Block Per-block Shared Memory … … Per-device Global Memory Kernel 0 Kernel 1 Sequential Kernels Between host memory cudaMemcpy(); is used.
26
CUDA extensions Declaration specifiers : _global_ void kernelFunc(…); // kernel function, runs on device _device_ int GlobalVar; //variable in device memory _shared_ int sharedVar; //variable in per-block shared memory Extend function invocation syntax for paralell kernel launch KernelFunc >> // launch dimGrid blocks with dimBlock threads each Special variables for thread identification in kernels dim3 threadIDx; dim3 blockIdx; dim3 block Dim; dim3 gridDim; Barrier Synchronization between threads _syncthreads();
27
CUDA runtime Device menagement: cudaGetDeviceCount(), cudaGetDeviceProperties(); Device memory management: cudaMalloc(), cudaFree(),cudaMemcpy() Graphics interoperability: cudaGLMapBufferObject(), cudaD3D9MapResources() Texture management: cudaBindTexture(), cudaBindTextureToArray()
28
Example: Increment Array Elements void increment_cpu(float *a, float b, int N) { for(int idx=0;idx<N;idx++) a[idx]=a[idx]+b; } void main() { … increment_cpu(a,b,N); } _global_ void increment_gpu(float *a, float b, int N) { int idx=blockidx.x*blockDim.x+threadIdx.x; if(idx<N) a[idx]=a[idx]+b; } void main() { … dim3 dimBlock(blocksize); dim3 dimGrid(ceil(N/(float)blocksize)); increment_gpu >(a,b,N); }
29
Example: Increment Array Elements blockIdx.x=0 blockDim.x=4 threadIdx.x=0,1,2,3 idx=0,1,2,3 blockIdx.x=1 blockDim.x=4 threadIdx.x=0,1,2,3 idx=4,5,6,7 blockIdx.x=2 blockDim.x=4 threadIdx.x=0,1,2,3 idx=8,9,10,11 blockIdx.x=3 blockDim.x=4 threadIdx.x=0,1,2,3 idx=12,13,14,15 Let’s assume N=16, blockDim=4 int idx = blockDim.x * blockId.x + threadldx.x; will map from local index threadIdx to global index. blockDim should be >= 32 in real code! Using more number of blocks hides the memory latency in GPU.
30
Host code // allocate host memory unsigned int numBytes = N*sizeof(float); float * h_A = (float *) malloc(numBytes); // allocate device memory float* d_A=0; cudaMalloc((void**)&d_a, numBytes); // copy data from host to device cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice); // execute the kernel increment_cpu >>(d_A,b); // copy data from device back to host cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost); // free device memory cudaFree(d_A);
31
PBSM Thread Processors PBSM Thread Processors PBSM Thread Processors PBSM Thread Processors PBSM Thread Processors … Thread Execution Manager Input Assembler Host Load/Store Global Memory GeForce GTX280 240 cores
32
Hardware Implementation: Execution Model Kernel 1 Block (0,0) Block (1,0) Block (2,0) Block (0,1) Block (1,1) Block (2,1) Grid1 DeviceHost Kernel 2 Block (0,0) Block (1,0) Block (2,0) Block (0,1) Block (1,1) Block (2,1) Grid2 Thread (0,0) … Thread (31,0) Thread (32,0) … Thread (63,0) Warp 0Warp 1 Thread (0,1) … Thread (31,1) Thread (32,1) … Thread (63,1) Warp 2Warp 3 Thread (0,2) … Thread (31,2) Thread (32,2) … Thread (63,2) Warp 4Warp 5 Block (1,1) A multiprocessor executes the same instruction on a group of threads called a warp. Warp size= the number of threads in a warp
33
Automatic parallelizing Compilers Automatically translating a code for uniprocessors into multiprocessors. Loop level parallelism is main target of parallelizing. Fortran codes have been main targets No pointers The array structure is simple Recently, restricted C becomes a target language Oscar Compiler (Waseda Univ.), COINS
34
Shared memory model vs . Message passing model Benefits Distributed OS is easy to implement. Automatic parallelize compiler. POSIX thread, OpenMP Message passing Formal verification is easy (Blocking) No-side effect (Shared variable is side effect itself) Small cost
35
Parallel Programming Contest In this lecture, a parallel programming contest will be held. All students who want to get the credit must join it. At least, the program must correctly run. For students with good achievement, the credit will be given unconditionally.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.