Download presentation
Presentation is loading. Please wait.
Published byCleopatra Hill Modified over 9 years ago
1
Lund University From Rydberg to Atto physic Is matter a wave ?
2
Lund University -33 000 Big Bang 1897/ 1911 Joseph John Thomson: Characterization of the electron as an elementary particle Max Planck: Explication of the Black body radiation - Planck constant Albert Einstein: Explication of the Photoelectric effect Ernest Rutherford : Discovery of nucleus 1884/ 1888 Johan Jakob Balmer & Johannes Rydberg: Discrete spectral lines in vapour lamp
3
Lund University -33 000 Big Bang 1897/ 1911 Louis de Broglie: Wave-particle duality Werner Heisenberg: uncertainty principle Rudolf Schrödinger: Quantum mechanics Wolgan Pauli: Exclusion principle Paul Dirac: Relativistic Quantum mechanics Niels Bohr: First atomic model Joseph John Thomson / Max Planck / Albert Einstein Ernest Rutherford 1884/ 1888 Johan Jakob Balmer / Johannes Rydberg 1913 1924 / 19
4
Lund University 1990 2000 1980 1970 1960 1940 Modern theory Atoms,Molecules,Solid,Surface 2010 Experiences on atoms 1950 Experiences on molecules Experiences on surface Laser visible (CW, ns, ps, fs) Synchrotron X-ray (ns, ps) XUV X-ray (fs, as) Experiences on nano Louis de Broglie Werner Heisenberg Rudolf Schrodinger Wolgan Pauli Paul Dirac Louis de Broglie Werner Heisenberg Rudolf Schrodinger Wolgan Pauli Paul Dirac
5
Lund University Natural time scale
6
Lund University Dynamics in real time To capture a moving object we need... an exposure time /shutter faster than the motion ! Stroboscope Sequential
7
Lund University Electron dynamics – attosecond timescale electron XUV source with temporal coherence ion + t 2 eV Heisenberg uncertainties
8
Lund University step-wise direct Photoionization dynamics 1 photon 2 photon direct step-wise Because everything is a wave, we can assign a phase to everything… Interference between different ionization pathways arise from phase differences
9
Lund University Experimental background
10
Lund University Harmonic generation in a gas generation Gas (Ar) focusing optic 4 mJ, 35 fs 800 nm Ti:Saph Attosecond pulses filter wheel
11
Lund University Harmonic generation in a gas Corkum and Krausz, Nature physics 3, 381 (2007)
12
Lund University Harmonics : Attosecond pulse trains coupled, well-known phase! Filtering one-two harmonics 100 meV bandwidth/harmonic fs timescale Without filtering 10-20 eV bandwidth 260 as/pulse
13
Lund University Pump-Probe experiments IR Probe focusing mirror recombination mirror delay stage <30nm 4 mJ, 35 fs 800 nm Ti:Saph Electron detection XUV Pump
14
Lund University Ionization with Harmonics + IR probe IpIp harmonics IR probe sidebands It is complicated… XUV pump mainlines
15
Lund University Ionization in valence shell
16
Lund University Helium ionization 19 21 23 25 27 Harmonic order 2015 10 5 0 -5 -10 -15 Delay (fs) IpIp harmonics He + h H19-H27 He + + e - ( s ) + h IR d 1D Electron spectrometer Paul et al., Science 192 1689 (2001) RABITT
17
Lund University Helium ionization 2015 10 5 0 -5 -10 -15 Delay (fs) Freq. Amplitude DC comp. 2w FT( ) He + h H19-H21 He + + e - ( s ) + h IR d FT( )
18
Lund University Helium ionization Amplitude DC comp. 2w FT( ) He + h H19-H21 He + + e - ( s ) + h IR d Argon Helium offset (rad) Helium 3p Helium 1s What is happening? Harmonic 15 Harmonic 17
19
Lund University What do we measure? i kaka k Measured: XUV + IR ionization 1 keke Measured: XUV
20
Lund University Resonant ionization of helium tuning to red Ionization threshold Swodoba et al. Phys Rev Lett 104, 103003 (2010)
21
Lund University Ionization in valence and inner valence shells
22
Lund University Unbound states free particle: with r E potential present: shift δ with respect to free particle δ carries information about core region
23
Lund University δ for different potentials short range potential: V=0, r > r 0 matching conditions real potential:, r > r 0 0 V r0r0 r => 0 V r0r0 r scattering phase
24
Lund University Scattering phase and photoemission time delay One-Photon ionization: phase of complex amplitude is scattering phase Group delay of an electron wave packet during photoemission optics: pulse propagationelectron propagation: Wigner time delay 1s k
25
Lund University Measurement principle Ar S modulated with harmonic-IR delay:
26
Lund University What do we measure? i kaka k keke Wigner time delay Interference: Measured: XUV + IR ionization
27
Lund University Compare experiment and approximation Wigner time delay Continuum- continuum contribution Approximation Experiment
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.