Download presentation
Presentation is loading. Please wait.
Published byPaula Merritt Modified over 9 years ago
1
Rikkyo University Murata.lab / RIKEN Rikkyo University Murata.lab / RIKEN Master course 2nd Kentaro Watanbe Kentaro Watanbe PHENIX Colaboration meeting 2012 @ Rikkyo University Optical Alignment System for the PHENIX Muon Tracker Optical Alignment System for the PHENIX Muon Tracker 1
2
修論内容 2 ReCap OASys PHENIX Muon Tracking Chamber の性能改善 (仮) クロストークの軽減 チェンバーのアライメント
3
In order to achieve better momentum resolution We should correct for these relative movement !! The purpose of the optical alignment system(OASYS) is the real- time monitoring of the relative alignment among the stations. the muon is flyting 15 degrees Alignment for MuTr W physics W signal : 500 μ m 〜 1.5mm MuTr Chamber resolution : 100 μ m During the experiment period Each chamber moves 50 to 300 μ m by the magnetic field or temperature excursion !!! ↑ なにをもってそう言っている の?
4
Optical Alignment System ① The OASYS consists of a light source at station 1, a convex lens at station 2, and a CCD camera at station3. When an individual station moves, the image on the CCD camera moves reflecting the station movement. By observing the position of the light spot on the image of the CCD camera, we can monitor each station’s relative movement. We use a halogen lamp and optical fiber as a light source for the OASYS. Optical fibers guide light from the halogen lamp It is attached on the edge of station1. Seven CCD cameras have been set up to each octant as in a diagram. station1station3station2 OASys CCD → xy 平面の相対的な位置をとらえる。 光学テコの関係から st1 の動きが強い?
5
Optical Alignment System ② 56 OASYS cameras by each arm. total 112 cameras The results of measurement are peak position distributions for 1000 samples obtained within 30 minutes. The typical sharp image and the typical broad image are displayed. The measured resolution is 1.4 μ m for sharp image, and 3.1 μ m for the broad image. Resolution for the CCD camera The typical sharp image The typical brod image resolution is 1.4 μ m resolution is 3.1 μ m capture raw data image 6.6mm 8.8mm OASys determines the center position by Fitting. First, it makes two histograms which are projected image on the horizontal or vertical axis.….
6
6 OASys の理想と現実 時々刻々と変化するチェンバーの変形 を捉えトラッキングに補正を加える OASys パラメーター モデリング Alignment パラメーターの算 出 モデリングの困難 ・相対位置の縛り ・剛体仮定 ・ z 軸のパラメーター モデリングの困難 ・ zero field run ・ j/ ψ→ 2 μ ・他の測定 Run9 より復 旧 『 OASys というディバイス が本当にチェンバーの動き をトレース出来ているのか。 つまり、 OASys の変動とい うものは真にチェンバーの 動きによるものか?』 と いう事を確認した人は、未 だいない。。 Zero field から算出される チェンバーの動きとと OASys の動きとの相関を見 る事でそれを確認したい! W 分解能 向上 !!
7
OASys の稼働状況とその動き North Arm South Arm All camera X direction 12 camera broken 3 camera broken Displacement Sample Picture South arm camera 50 direction X 70 μ m ① ⑤ ④ ③ ② ⑦ ⑥ half octant
8
8 Linear Fit the Movement of optics 90 μ m 70μm70μm X direction Y direction I think this long term movement as the rotation or translational motion or Monotonic expansion of the chamber by the fixture degradation, land subsidence. この全体としての大き な動きに注目!! 実際のチェンバーはこ の通り動いている の!?
9
9 Movement of optics Movement of optics X direction Y direction Run9 first of March to end of June 4 month one day Daily fluctuation 10 μ m ↓ その日における温度の変動 This fluctuation is defined error of long term. I’m focused the movement of the long term. So, I treat daily fluctuation as random noise. it means the error bar of OASys become about 10 μ m ± 1℃ /day
10
10 IR 内の温度変動との相関 4 month
11
11
12
12 Linear fit all camera: North Arm X direction Linear fit all camera: North Arm X direction 2009 3/1 〜 6/30 (120day)
13
13 Linear fit : North Arm Y direction Linear fit : North Arm Y direction 2009 3/1 〜 6/30 (120day)
14
14 Linear fit : South Arm X direction Linear fit : South Arm X direction 2009 3/1 〜 6/30 (120day)
15
15 Linear fit : South Arm Y direction Linear fit : South Arm Y direction 2009 3/1 〜 6/30 (120day)
16
16 OASys Vector Map in Run9 OASys Vector Map in Run9 It is real chamber movement ?? North Arm South Arm What do you think this movement ??
17
collision external point stub point st3 sagitta stub point st2 stub point st1 sagitta = stub point st3 external point ー ※ The external division is defined from 2 stub information (st1&st2). How to define the sagitta Zero Field Run Saggita Analysis We must confirm that OASys parameter can be tracing real chamber movement by another independent tool. It is “zero field run saggita analysis !!” Because, in the zero magnetic field, almost track became straight. It means the sagitta will disturibute around 0.0
18
18 ① ⑤ ④ ③ ② ⑦ ⑥ half octant
19
Sagitta distribution & miss Alignment zero field cosmic 1st zero field 2nd zero field pp500GeV pp200GeV March May January chamber moving ?? mean March mean May Miss Alignment = mean_March – mean_May > chamber resolution
20
20 sample: south octant8 half2
21
21 Run9 March South Run9 March North Run9 May South Run9 May North
22
Muon momentum study pp500GeV momentum [GeV] run condition under 10GeV 97.3% of ALL !! This spectrum is pp500GeV track associated muon momentum distribution (No track cut ). 500GeV (3104228/3187765) 97.3%
23
momentum [GeV] High pt spectrum seems to decrease than pp500GeV. However under 10GeV muon is 98.3%, high pt muon is not sensitive for the residual distribution. Muon momentum study pp200GeV run condition under 10GeV 98.3% of ALL !! 200GeV (961325/945105) 98.3%
24
Muon momentum study summary pp200GeV pp500GeV momentum [GeV] The residual distribution is based on under 10 GeV muon. The spectrum is same in pp200GeV and pp500GeV. It means the residual from different beam can be compered. And the different of beam is not sensitive 2nd gaussian. pp200GeV pp500GeV 1/momentum [/GeV] Normalized ( 〜 10GeV) 1/p Normalized log scale 1GeV 0.2GeV
25
simulation study From zero field cosmic study, we make sure second gaussian component is not based on hadron decay. So, we guess that component will be based on the effect of multiple scattering another momentum. After the last meeting, Oide-san gave me simple multiple scattering root macro. I modified that macro to near real condition. Fist Step : Air volume contribution (fix muon momentum) At first I assumed if 2.0 GeV muon go through between St1 to St3. Then muon is affected by the effect of multiple scattering from air volume. I want to know the final position (St3) is how much spread by that effect. 2GeV muon st1 st3
26
calculation by hand The multiple scattering is roughly Gaussian for small deflection angles, the projected angular distribution, with a width given by The projected y direction distribution is given by @ South station2 〜 station3 moun momentum : 2GeV x : 160cm air radiation length : 37g ・ cm^-2 air density : →σ = 469 μ m
27
the result of simulation 2GeV muon The cause of fixed momentum 2Gev, it can be fit with single gaussian. This simulation consistent with hand calculation.
28
different momentum distribution 1GeV fixed RMS: 939 μ m 2GeV fixed RMS: 470 μ m 5GeV fixed RMS: 188 μ m 10GeV fixed RMS: 94 μ m
29
different momentum contribution The second gaussian component is appeared !!! Generate muon distribution pp500GeV
30
これより! zero field の中でも高運動量な イベントは取り分けまっすぐ なトラックを作る! そのイベントほしい 30
31
31
32
32
33
Fit 2gaussian simulation data momentum 1 〜 10GeV RChiS= 1.1019
34
34 Run9 March South bin100
35
A few octant have asymmetry distribution. It is not first priority to find out this asymmetry source. However, I was able to find out that source by simple correlation study. So, today I would like to talk about this study.
37
37 Run9 May South bin100
38
38 Run9 March North bin100
39
39 Run9 May North
40
1 2 3 4 5 6 7 8 Run9 South March mean position direction ?
41
1 2 3 4 5 6 7 8 Run9 North March mean position direction ?
42
42 South Arm OASys & Zerof の相関
43
43 South Arm OASys & Zerof の相関のズーム
44
44 North Arm OASys & Zerof の相関のズーム
45
South 相関あり?? North 相関なし??
46
まとめ
47
Calculation alignment system (Millepede) PHENIX Physics RUN zero field run 1st zero field run 2nd zero field run 3rd few months Meaning OASys Meaning OASys It is important to align relative positions among the three stations, because it affects the momentum measurement. We align position among the three stations using field off run at the beginning of the experiment. However, each station moved 100-300 μ m during the experiment period. In order to monitor this real-time movement, an optical alignment system(OASYS) has been installed into muon tracking chamber. Optical Alignment System (OASys) The zero field run data taking is less frequent. However, OASys data taking can be 365days. It is meaningful OASYS. OASys data taking Making use of this advantage, OASys send the signal to taking zero field run for Millepede Alignment. Re-Alignment warning!!
50
The change of Second gaussian component 上記の通り、2つのガウシアンと pol0 でフィッティングを行うと3月のデータと 5月のデータで第2ガウシアンの ratio が変化しているように見受けられる。特に 5月のデータでは、その量が総じて減っている。この理由を考察する事で今まで ハドロンの decay として扱っていた2つ目の component に対して正確に ID する事が 今回の study の目的である。 Run9 March South Oct8 half1 Rchis : 1.82 Run9 May South Oct8 half1 Rchis : 3.07 単純に Fit が上手く決まらないのが原因で第2 ガウシアンの要素が死んだと考えるものの sample 。 Run9 March Norh Oct3 half1 Rchis : 1.24 Run9 May Norh Oct3 half1 Rchis : 170 Fit は上手くいっていて本当に第2ガウシアンのス ペクトルの形が変化したのかもしれない。と思う もの。
51
51 To Do List for the master thesis ■ X-talk -cosmic data taking - ReCap inpact plot making ■ Alignment -Residual Fitting Optimize -OASys error bar estimation & conversion ø direction -Correlation plot making
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.