Download presentation
Presentation is loading. Please wait.
Published byGeorgiana Phyllis Perry Modified over 9 years ago
1
Sedimentary Rocks— The Archives of Earth History Chapter 6
2
How do we know whether sedimentary rocks were deposited on –continents—river floodplains or desert sand dunes? –at the water's edge? –in the sea? Sedimentary rocks –preserve evidence of surface depositional processes –and many contain fossils –These things give clues to the depositional environment Depositional environments are specific areas –or environments where sediment is deposited History from Sedimentary Rocks
3
Delicate Arch –is one of several arches, pillars, and spires in –Arches National Park –in the Jurassic-aged Entrada Sandstone –which were formed by weathering and erosion –along large fractures called joints Arches National Park, Utah
4
Sedimentary rocks –preserve evidence –of the physical, chemical and biological processes –that formed them Some sedimentary rocks are resources, or contain resources –petroleum –natural gas –coal –phosphorus Sedimentary Rocks
5
For instance, phosphorous –from phosphorous-rich sedimentary rocks –is used in fertilizers animal-feed supplements metallurgy matches ceramics preserved foods Phosphorous
6
Observation and data gathering –by visiting rock exposures (outcrops) –and carefully examining textures composition fossils (if present) thickness relationships to other rocks Preliminary interpretations in the field may be made –For example: red rocks may have been deposited on land whereas greenish rocks are more typical of marine deposits (Caution: Exceptions are numerous!) Investigating Sedimentary Rocks
7
More careful study of the rocks is needed: –microscopic examination –chemical analyses –fossil identification –interpretation of vertical and lateral facies relationships –comparison with present-day sediments When data have been analyzed, geologists make an environmental interpretation Investigating Sedimentary Rocks
8
Very common minerals in detrital rocks: –quartz, feldspars, and clay minerals Detrital rock composition tells –about source rocks, –not transport and deposition Quartz sand may have been deposited –in a river system –on a beach or –in sand dunes Composition of Detrital Rocks
9
Composition of chemical sedimentary rocks –is more useful in revealing environmental information Limestone is deposited in warm, shallow seas –although a small amount also originates in lakes Evaporites such as rock salt and rock gypsum –indicate arid environments –where evaporation rates were high Composition of Chemical Sedimentary Rocks
10
Detrital grain size gives some indication –of the energy conditions –during transport and deposition High-energy processes –such as swift-flowing streams and waves –are needed to transport gravel Conglomerate must have been deposited –in areas where these processes prevail Sand transport also requires high-energy transport Silt and clay are transported –by weak currents and accumulate –only under low-energy conditions –as in lakes and lagoons Grain Size
11
Texture refers to the size, distribution, shape, and arrangement of clasts Sorting and rounding are two textural features –of detrital sedimentary rocks –that aid in determining depositional processes Rounding is the degree to which –detrital particles have their sharp corners and edges –warn away by abrasion Gravel in transport is rounded very quickly –as the particles collide with one another Smaller particles in suspension –are usually not as rounded Sorting and Rounding
12
All of these stones are rounded –and have lost their sharp edges The stone in the upper left is also spherical Rounding
13
Sorting refers to the variation –in size of particles making up sediment or sedimentary rocks If the size range is not very great, –the sediment or rock is well sorted If they have a wide range of sizes, –they are poorly sorted Wind has a limited ability to transport sediment –But glaciers can carry any size particles –Glacial deposits are poorly sorted, wind deposits are well- sorted Sorting
14
A deposit –of well rounded –moderately sorted gravel Rounding and Sorting Versus a deposit –of angular – poorly sorted gravel
15
Sedimentary structures are –features that formed at the time of deposition or shortly thereafter –and are manifestations of the physical and biological processes –that operated in depositional environments Structures –seen in present-day environments –or produced in experiments –help provide information –about depositional environments of rocks –with similar structures Sedimentary Structures
16
Sedimentary rocks generally have bedding or stratification Bedding –Individual layers less than 1 cm thick are laminations common in mudrocks –Beds are thicker than 1 cm common in rocks with coarser grains
17
Some beds show an upward gradual decrease in grain size, known as graded bedding Graded Bedding Graded bedding is common in turbidity current deposits –which form when sediment-water mixtures flow along the seafloor –As they slow, –the largest particles settle out, –then smaller ones
18
Cross-bedding forms when layers come to rest –at an angle to the surface –upon which they accumulate –as on the downwind side of a sand dune Cross-beds result from transport –by either water or wind The beds are inclined or dip downward –in the direction of the prevailing current They indicate direction of the flow of ancient currents Cross-Bedding
19
Individual beds are deposited at an angle Cross-Bedding Horizontal bedding and cross-bedding in Upper Cambrian St. Peter Sandstone in Wisconsin
20
Small-scale alternating ridges and troughs –known as ripple marks are common –on bedding planes, especially in sandstone Current ripple marks –formed from wind or water flow –and have asymmetry –indicating the original flow direction Wave-formed ripple marks –result from the to-and-fro motion of waves –and tend to be symmetrical Ripple Marks
21
Ripples with an asymmetrical shape The photo shows current ripples –that formed in a small stream channel –with flow from right to left Current Ripple Marks
22
As the waves wash back and forth, –symmetrical ripples form The photo shows wave- formed ripple marks –in shallow seawater Wave-Formed Ripples
23
When clay-rich sediments dry, they shrink –and crack into polygonal patterns –bounded by fractures called mud cracks Mud cracks require wetting and drying to form, Mud Cracks –as along a lakeshore –or a river flood plain –or where mud is exposed at low tide along a seashore
24
Mud cracks in ancient rocks –in Glacier National Park, Montana Mud cracks can fill in –with sediment –when they are preserved –as seen here Ancient Mud Cracks
25
Biogenic sedimentary structures include –tracks –burrows –trails called trace fossils Extensive burrowing by organisms –is called bioturbation –and may alter sediments so thoroughly –that other structures are disrupted or destroyed Biogenic Sedimentary Structures
26
U-shaped burrows Bioturbation Vertical burrows
27
Bioturbation Vertical, dark-colored areas in this rock are sediment-filled burrows
28
Sedimentary structures are important –for environmental analyses –but no single structure is unique to a specific environment Example: –Current ripples are found in stream channels in tidal channels Environmental determinations –are usually successful with –associations of groups of sedimentary structures –taken along with other sedimentary rock properties No Single Structure Is Unique
29
Sedimentary structures and fossils –allow geologists to resolve the history of an area –when rocks have been deformed Here, the mudcrack “V” opens toward younger strata, –and shape of current ripple marks Indicate that the youngest layer is lower right Sedimentary Structures
30
The three-dimensional shape or geometry –of a sedimentary rock body –may be helpful in environmental analyses –but it must be used with caution –because the same geometry may be found –in more than one environment. –Geometry can be modified by sediment compaction –during lithification –and by erosion and deformation Nevertheless, it is useful in conjunction –with other features Geometry of Sedimentary Rocks
31
Some of the most extensive sedimentary rocks –in the geologic record result from –marine transgressions and regressions The rocks commonly cover –hundreds or thousands of square kilometers –but are perhaps only –a few tens to hundreds of meters thick Their thickness is small compared –to their length and width Thus, they are said to have –blanket or sheet geometry Blanket or Sheet Geometry
32
Some sand deposits have an elongate or shoestring geometry –especially those deposited in stream channels or barrier islands Elongate or Shoestring Geometry
33
Delta deposits tend to be lens shaped –when viewed in cross profile or long profile –but lobate when observed from above Buried reefs are irregular –but many are long and narrow –or rather circular Other Geometries
34
Fossils –are the remains or traces of prehistoric organisms –can be used to establish biostratigraphic units –are important constituents of rocks, sometimes making up the entire rock –are important for determining depositional environments Some rocks, especially limestones, are composed –largely of shells of marine-dwelling animals –or even the droppings of these organisms Fossils—The Biologic Content of Sedimentary Rocks
35
This variety of limestone, –known as coquina, –is made entirely of shell fragments Fossils Are Constituents of Sedimentary Rocks
36
Did the organisms in question live where they were buried? Or where their remains or fossils transported there? Example: –Fossil dinosaurs usually indicate deposition –in a land environment such as a river floodplain –But if their bones are found in rocks with –clams, corals and sea lilies, –we assume a carcass was washed out to sea Fossils in Environmental Analyses
37
What kind of habitat did the organisms originally occupy? Studies of a fossil’s structure –and its living relatives, if any, –help environmental analysis For example: clams with heavy, thick shells –typically live in shallow turbulent water –whereas those with thin shells –are found in low-energy environments Most corals live in warm, clear, –shallow marine environments where –symbiotic bacteria can carry out photosynthesis Environmental Analyses
38
Microfossils are particularly useful –because many individuals can be recovered –from small rock samples In oil-drilling operations, small rock chips –called well cuttings are brought to the surface These cuttings rarely –contain complete fossils of large organisms, –but they might have thousands of microfossils –that aid in relative dating and environmental analyses Microfossils
39
Trace fossils, too, may be characteristic of particular environments Trace fossils, of course, are not transported from their original place of origin Trace Fossils In Place
40
A depositional environment –is anywhere sediment accumulates –especially a particular area –where a distinctive kind of deposit originates –from physical, chemical, and biological processes Three broad areas of deposition include –continental –transitional –marine –each of which has several specific environments Depositional Environments
41
Continental environments Transitional environments Marine environments
42
Deposition on continents (on land) might take place in –fluvial systems – rivers and streams –deserts –areas covered by and adjacent to glaciers Deposits in each of these environments –possess combinations of features –that allow us to differentiate among them Continental Environments
43
Fluvial refers to river and stream activity –and to their deposits Fluvial deposits accumulate in either of two types of systems –Braided stream system with multiple broad, shallow channels in which mostly sheets of gravel and cross-bedded sand are deposited mud is nearly absent Fluvial
44
The deposits of braided streams are mostly –gravel and cross-bedded sand bodies Mud is nearly absent Braided Stream
45
Braided stream deposits consist of gravel –cross-bedded sand –but mud is rare or absent Braided Stream Deposits
46
The other type of system is a meandering stream –with winding channels –mostly fine-grained sediments on floodplains –cross-bedded sand bodies with shoestring geometries –point-bar deposits consisting of a sand body –overlying an erosion surface –that developed on the convex side of a meander loop Fluvial Systems
47
Meandering stream deposits Meandering Stream –are mostly fine-grained floodplain –sediments with subordinate sand bodies
48
In meandering stream deposits, –fine-grained floodplain sediment is common –with subordinate sand bodies Meandering Stream Deposits
49
Desert environments contain an association of features found in –sand dune deposits, –alluvial fan deposits, –and playa lake deposits Windblown dunes are typically composed –of well-sorted, well-rounded sand –with cross-beds meters to tens of meters high –land-dwelling plants and animals make up any fossils Desert Environments
50
Alluvial fans form best along the margins of desert basins –where streams and debris flows –discharge from mountains onto a valley floor –They form a triangular (fan-shaped) deposit –of sand and gravel The more central part of a desert basin –might be the site of a temporary lake, a playa lake, –in which laminated mud and evaporites accumulate Alluvial Fans and Playa Lakes
51
Huge alluvial fans formed at the base of the Panamint Mountains, Death Valley Sand dunes also are present in Death Valley Associations in Desert Basin
52
This playa lake near Fallon, Nevada –has deposits of rock salt forming Playa Lake
53
All sediments deposited in –glacial environments are collectively called drift Till is poorly sorted, nonstratified drift –deposited directly by glacial ice –mostly in ridge-like deposits called moraines Outwash is sand and gravel deposited –by braided streams issuing from melting glaciers The association of these deposits along with –scratched (striated) and polished bedrock –is generally sufficient to conclude –that glaciers were involved Glacial Environments
54
Moraines and poorly sorted till Moraines and Till
55
Glacial lake deposits show –alternating dark and light laminations Each dark-light couplet is a varve, –representing one year’s accumulation of sediment –light layers accumulate in spring and summer –dark layers in winter Glacial Varves Dropstones –liberated from icebergs –may also be present
56
Transitional environments include those –with both marine and continental processes Example: –Deposition where a river or stream (fluvial system) –enters the sea –yields a body of sediment called a delta –with deposits modified by marine processes, especially waves and tides Transitional environments include –deltas –barrier islands and lagoons –tidal flats Transitional Environments
57
Transitional environments
58
Simple Deltas –topset beds –foreset beds –bottomset beds The simplest deltas are those in lakes. They consist of –As the delta builds outward, it progrades –and forms a vertical sequence of rocks –that becomes coarser-grained from the bottom to top –The bottomset beds may contain marine (or lake) fossils, –whereas the topset beds contain land fossils
59
Marine deltas rarely conform precisely –to this simple threefold division because –they are strongly influenced –by one or more modifying processes When fluvial processes prevail –a stream/river-dominated delta results Strong wave action –produces a wave dominated delta Tidal influences –result in tide-dominated deltas Marine Deltas
60
Stream/river- dominated deltas –have long distributary channels –extending far seaward –Mississippi River delta Stream/River-Dominated Deltas
61
Wave- dominated deltas –such as the Nile Delta of Egypt –also have distributary channels –but their seaward margin –is modified by wave action Wave-Dominated Deltas
62
Tide-Dominated Deltas, –such as the Ganges-Brahmaputra delta Tide-Dominated Deltas –have tidal sand bodies –along the direction of tidal flow
63
On broad continental margins –with abundant sand, long barrier islands lie offshore –separated from the mainland by a lagoon Barrier islands are common along the Gulf –and Atlantic Coasts of the United States Many ancient deposits formed in this environment Subenvironments of a barrier island complex: –beach sand grading offshore into finer deposits –dune sands contain shell fragments not found in desert dunes –fine-grained lagoon deposits with marine fossils and bioturbation Barrier Islands
64
Subenvironments of a barrier island complex Barrier Island Complex
65
Tidal flats are present –where part of the shoreline is periodically covered –by seawater at high tide and then exposed at low tide Many tidal flats build or prograde seaward –and yield a sequence of rocks grading upward –from sand to mud One of their most distinctive features –is herringbone cross-bedding –or sets of cross-beds that dip in opposite directions Tidal Flats
66
Tidal-flat deposits showing a prograding shoreline –Notice the distinctive cross-beds –that dip in opposite directions Tidal Flats
67
Marine environments include –continental shelf –continental slope –continental rise –deep-seafloor Much of the detritus eroded from continents –is eventually deposited in marine environments but other sediments –are found here as well Marine Environments
68
Marine environments
69
The gently sloping area adjacent to a continent –is a continental shelf It consists of a high-energy inner part that is –periodically stirred up by waves and tidal currents Its sediment is mostly sand, –shaped into large cross-bedded dunes Bedding planes are commonly marked –by wave-formed ripple marks Marine fossils and bioturbation are typical Detrital Marine Environments
70
The low-energy part of the shelf –has mostly mud with marine fossils, –and interfingers with inner-shelf sand Much sediment derived from the continents –crosses the continental shelf –and is funneled into deeper water –through submarine canyons It eventually comes to rest –on the continental slope and continental rise –as a series of overlapping submarine fans Slope and Rise
71
Once sediment passes the outer margin –of the self, the shelf-slope break, –turbidity currents transport it So sands with graded bedding are common as well as mud that settled from seawater Slope and Rise
72
Shelf, slope and rise environments The main avenues of sediment transport –across the shelf are submarine canyons Detrital Marine Environments Turbidity currents carry sediment to the submarine fans Sand with graded bedding and mud settled from seawater
73
Beyond the continental rise, the seafloor is –nearly completely covered by fine-grained deposits pelagic clay and ooze –with no sediment at all near mid-ocean ridges –sand and gravel are notably absent The main sources of sediment are –dust from continents or oceanic islands –volcanic ash –shells of microorganisms that dwelled in surface waters of the ocean Deep Sea
74
Types of sediment are –pelagic clay, which covers most of the deeper parts of the seafloor –calcareous (CaCO 3 ) and siliceous (SiO 2 ) oozes made up of microscopic shells Deep Sea
75
Sediments on the deep seafloor consist of –calcareous foraminifera and coccolithophores –siliceous radiolarians and diatoms Deep Sea
76
Carbonate rocks are –limestone, which is composed of calcite –dolostone, which is composed of dolomite most dolostone is altered limestone Limestone is similar to detrital rock in some ways –Many limestones are made up of gravel-sized grains sand-sized grains microcrystalline carbonate mud called micrite –but the grains are all calcite –and are formed in the environment of deposition, –instead of being transported there Carbonate Environments
77
Some limestone form in lakes, –but most limestone by is deposited –in warm shallow seas –on carbonate shelves and –on carbonate platforms rising from oceanic depths Deposition occurs where –little detrital sediment, especially mud, is present Carbonate barriers form in high-energy areas and may be –reefs –banks of skeletal particles –accumulations of spherical carbonate grains known as ooids which make up the grains in oolitic limestone Limestone Environments
78
Deposition of limestone is taking place in southern Florida and the Persian Gulf Carbonate Shelf
79
Reef rock tends to be –structureless –composed of skeletons of corals, mollusks, sponges and other organisms Carbonate banks are made up of –layers with horizontal beds –cross-beds –wave-formed ripple marks Lagoons tend to have –micrite –with marine fossils – bioturbation Carbonate Subenvironments
80
Evaporites consist of –rock salt –rock gypsum They are found in environments such as –playa lakes –saline lakes –but most of the extensive deposits formed in the seas Evaporites are not nearly as common –as sandstone, mudrocks and limestone, –but can be abundant locally Evaporite Environments
81
Large evaporite deposits –lie beneath the Mediterranean Seafloor more than 2 km thick –in western Canada, Michigan, Ohio, New York, –and several Gulf Coast states How some of these deposits originated –is controversial, but geologists agree –that high evaporation rates of seawater –caused minerals to precipitate from solution Coastal environments in arid regions –such as the present-day Persian Gulf –meet the requirements Evaporites
82
Jurassic-aged Navajo Sandstone –of the Southwestern United states –has all the features of wind-blown sand dunes: the sandstone is mostly well-sorted, well-rounded quartz measuring 0.2 to 0.5 mm in diameter tracks of land-dwelling animals, including dinosaurs, are present cross-beds up to 30 m high have current ripple marks like those produced on large dunes by wind today cross-beds dip generally southwest indicating a northeast prevailing wind Interpreting Depositional Environments
83
Jurassic-aged Navajo Sandstone
84
Lower Silurian strata exposed in New Jersey and Pennsylvania –We can use combined features of sedimentary rocks –and comparisons with present-day deposits Conclusion: –Sediments were deposited in braided streams –that flowed from east to west Interpreting Depositional Environments
85
Probable lateral relationships for the Green Pond Conglomerate Interpreting Depositional Environments
86
Geologists have also evaluated –vertical facies relationships –rock types –sedimentary structures –fossils in Ordovician rocks in Arkansas and conclude they formed as transgressive shelf carbonate deposits Interpreting Depositional Environments
87
Vertical stratigraphic relationships and inferred environments of deposition The trend was trangressive although several regressions occurred Interpreting Depositional Environments
88
Paleogeography deals with –Earth’s geography of the past Using interpretations –of depositional environment we can attempt to reconstruct –what Earth’s geography was like For example, –the Navajo Sandstone shows that a vast desert –was present in what is now the southwest –during the Jurassic Period and from Late Precambrian to Middle Cambrian –the shoreline migrated inland from east and west –during a marine transgression –in North America Paleogeography
89
Detailed studies of various rocks –in several western states –allow us to determine –with some accuracy –how the area appeared –during the Late Cretaceous A broad coastal plain –sloped gently eastward –from a mountainous region –to the sea Paleogeography
90
Later, vast lakes, –river floodplains, alluvial fans –covered much of this area –and the sea had withdrawn from the continent Paleogeography
91
Summary The physical and biological features –of sedimentary rocks reveal something about –the depositional processes that form them Environmental analysis –of sedimentary rocks uses –mainly sedimentary structures and fossils –but also textures, rock body geometry –and even composition Geologists recognize –three primary depositional areas –continental, transitional, and marine –each with several specific environments
92
Summary Fluvial systems might be braided or meandering –Braided streams deposit mostly sand and gravel, –whereas deposits of meandering streams are mostly mud and subordinate sand bodies with shoestring geometry An association of alluvial fan, sand dune, –and playa lake deposits –is typical of desert depositional environments Glacial deposits consist mostly of till –in moraines and outwash
93
Summary The simplest deltas, those in lakes, –consist of a three-part sequence of rocks –grading from finest at the base, –upward to coarser-grained rocks Marine deltas dominated by –fluvial processes, waves, or tides –are much larger and more complex A barrier island system includes beach, –dune, and lagoon subenvironments, –each characterized a unique association –of rocks, sedimentary structures, and fossils
94
Summary Inner shelf deposits are mostly sand, –whereas those of the outer shelf are mostly mud; –both have marine fossils and bioturbation Much of the sediment from land –crosses the shelves and is deposited –on the continental slope and rise as submarine fans Either pelagic clay or oozes –derived from the shells of –microscopic floating organisms –cover most of the deep seafloor
95
Summary Most limestone originates in shallow, –warm seas where little detrital mud is present Carbonate rocks (just as detrital rocks) –may possess cross-beds, ripple marks, –mud cracks, and fossils –that provide information –about depositional processes Evaporites form in several environments, –but the most extensive ones were deposited –in marine environments In all cases, evaporites formed –in arid regions with high evaporation rates
96
Summary With information from sedimentary rocks, –as well as other rocks, –geologists determine the past distribution –of Earth's surface features
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.