Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chap. 2. Problem 2a. pH = - log [H + ] pH = - log (1.75 x 10 -5 ) pH = - (-4.76) pH = 4.76.

Similar presentations


Presentation on theme: "Chap. 2. Problem 2a. pH = - log [H + ] pH = - log (1.75 x 10 -5 ) pH = - (-4.76) pH = 4.76."— Presentation transcript:

1 Chap. 2. Problem 2a. pH = - log [H + ] pH = - log (1.75 x 10 -5 ) pH = - (-4.76) pH = 4.76

2 Chap. 2. Problem 3a. pH = - log [H + ] [H + ] = 10 -pH [H + ] = 10 -3.82 [H + ] = 1.51 x 10 -4 M

3 Chap. 2. Problem 12. Part a. Acetic acid ionizes according to the following equilibrium equation HAc  H + + Ac - The Henderson-Hasselbalch equation for acetic acid is pH = pK a + log [Ac - ]/[HA] Substituting pK a = 4.76 and 2/1 for [Ac - ]/[HA] gives pH = 4.76 + log (2/1) pH = 4.76 + 0.30 pH = 5.06 Other answers: (b) 4.28; (c) 5.46; (d) 4.76; (e) 3.76

4 Chap. 2. Problem 15. A rearranged form of the HH equation can be used to determine the fraction of aspirin in its absorbable conjugate acid form (HA) as a function of pH in the stomach and intestines. In the stomach, 10 (pH - pKa) = [A - ]/[HA] 10 (1.5 - 3.5) = [A - ]/[HA] 10 -2 = 0.01 = 1/100 = [A]/[HA] In the small intestine, 10 (6 - 3.5) = [A - ]/[HA] 10 2.5 = 316/1 = [A - ]/[HA] The calculations show that a much greater fraction of aspirin is in its absorbable conjugate acid form in the stomach compared to the small intestine. Thus more aspirin is absorbed into the bloodstream from the stomach than from the small intestine. Ionizable proton

5 Chap. 2. Problem 18a&b. Part (a). A solution of a weak acid or base is effective in buffering pH when the pH is ± 1 unit from the pK a. In this pH range, appreciable amounts of both conjugate base and conjugate acid species are present in solution. Therefore, glycine can be used as an effective buffer in the pH range of 8.6-to-10.6. Part (b). This part of the question can be answered using the HH equation. pH = pK a + log [R-NH 2 ]/[R-NH 3 + ] [R-NH 2 ]/[R-NH 3 + ] = 10 (9.0-9.6) = 10 -0.6 = 0.25 = 1/4 This indicates that the amino group of glycine is about 1/5 deprotonated and 4/5 protonated at pH 9.0.

6 Chap. 2. Problem 18c. Part (c). This part of the problem can be answered by first calculating the number of moles of R-NH 2 in 1 L of the 0.1 M glycine solution at pH 9.0 and 10.0 using the HH equation. The difference in the number of moles present is stoichiometrically equivalent to the number of moles of OH - added in the form of KOH. At pH = 9.0 10 (9-9.6) = [R-NH 2 ]/[R-NH 3 + ] = 0.25 = 1/4 = 0.02 moles/0.08 moles. At pH = 10.0 10 (10-9.6) = [R-NH 2 ]/[R-NH 3 + ] = 2.5 = 2.5/1 = 0.0714 moles/0.0286 moles. During titration from pH 9.0 to 10.0, the number of moles of KOH added is 0.0714 moles - 0.02 moles = 0.0514 moles KOH. Thus, the volume of 5 M KOH added is (0.0514 moles)/(5 moles/L) = 0.01028 L = 10.3 ml KOH

7 Chap. 2. Problem 18d. Part (d). This part of the question also can be answered using the HH equation. pH = pK a + log [R-NH 2 ]/[R-NH 3 + ] pH = pK a + log (0.01/0.99) pH = pK a + (-2) = pK a - 2 In general, a weak acid or base is almost completely protonated when the solution pH is 2 units below the pK a. Likewise, it is almost completely deprotonated when the solution pH is 2 units above the pK a.

8 Chap. 2. Problem 22. The equation for the complete ionization of phosphoric acid is H 3 PO 4  H + + H 2 PO 4 -  H + + HPO 4 2-  H + + PO 4 3- This problem is solved using the HH equation. Note that the pK a closest to the pH of the solution should be selected for substitution into the HH equation. This is because the concentrations of H 3 PO 4 and PO 4 3- in solution at this pH are insignificant compared to the concentrations of H 2 PO 4 - and HPO 4 2-. pH = pK a + log [conjugate base]/[conjugate acid] pH = pK a + log [HPO 4 2- ]/[H 2 PO 4 - ] [HPO 4 2- ]/[H 2 PO 4 - ] = 10 (7.0-6.86) [HPO 4 2- ]/[H 2 PO 4 - ] = 10 0.14 = 1.38 = 1.4

9 Chap. 2. Problem 24. pH = pK a + log [A - ]/[HA] pH - pK a = log [A - ]/[HA] 10 (pH - pKa) = [A - ]/[HA] 10 (5-6) = 10 -1 = 0.1 = 1/10 = [A - ]/[HA] Note that this acid is 1/(10+1) = 1/11 = 9.1% ionized at this pH.

10 Chap. 2. Problem 28. pH = pK a + log [conjugate base]/[conjugate acid] pH = pK a + log [acetate]/[acetic acid] pH = 4.76 + log (0.2/0.6) pH = 4.76 + log (0.33) pH = 4.76 + (-0.48) = 4.28 = 4.3

11 Chap. 2. Problem 33. The overall equation for the carbon dioxide-bicarbonate buffer system is CO 2 + H 2 O  H + + HCO 3 - The pH of blood plasma is controlled by this system. In Part (a), during hypoventilation, as when one holds one’s breath, the concentration of CO 2 in the blood increases. This shifts the equation to the right and results in an increase in the acidity of blood (lower pH). In Part (b), during hyperventilation the concentration of CO 2 in the blood decreases. This shifts the carbon dioxide-bicarbonate equation to the left, decreasing [H + ] and raising the pH of the blood. In Part (c), raising the pH of the blood due to hyperventilation increases the ability of the blood to resist a decrease in pH due to the input of H + into the blood from lactate.


Download ppt "Chap. 2. Problem 2a. pH = - log [H + ] pH = - log (1.75 x 10 -5 ) pH = - (-4.76) pH = 4.76."

Similar presentations


Ads by Google