Download presentation
Presentation is loading. Please wait.
Published byLucinda Greer Modified over 9 years ago
1
CLIC Drive Beam Linac Rolf Wegner
2
Outline Introduction: CLIC Drive Beam Concept Drive Beam Modules (modulator, klystron, accelerating structure) Optimisation of accelerating structure Conclusions 2CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
3
Introduction: CLIC Drive Beam The CLIC Drive Beams are powerful energy sources from which the Power Extraction and Transfer Structures (PETS) extract a total peak power of 9.2 TW at X-band (3 TeV CLIC) Specs: 2.4 GV, 100 A, 24 x 240 ns long bunch trains, bunch spacing 12 GHz, 50 Hz rep. rate 2 x 24 x 240 GW peak, 140 MW avg beam power 60 kJ / bunch train, 1.4 MJ / pulse Reason: efficient X-band power production (alternative: 35’000 x 50 MW X-band klystrons + pulse compr.) 3CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
4
Introduction: CLIC Drive Beam 4CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 DB source SH bunchers DB acceleration beam gymnastics PETS main beam acc. structures f bunch f acc I beam, train avg V beam T train 500 MHz 1 GHz4.2 A2.4 GV140 μs 12 GHz100 A2.4 GV24 x 240 ns 12 GHz
5
Introduction: 3 TeV CLIC scheme 5CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
6
Introduction: CLIC Drive Beam Complex f acc = 0.99952 GHz I pulse = 4.2 A V acc = 2.37 GV η RF->beam ≥ 95% P peak,RF ≈ 12 GW P avg,RF ≈ 90 MW f bunch = ½ f acc Q bunch = 8.4 nC φ s = 19⁰ 6CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
7
Drive Beam Accelerator 7CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 present baseline: modules composed of modulator (24 MW), klystron (1 GHz, 18 MW), Erk Jensen: cost optimum 15-20 MW including lifetime + future R&D accelerating structure (15 MW) ~ 1’600 modules for 2 DB-Linacs for a 3 TeV CLIC V acc, module = 3.2 MV ( φ s =-19°)
8
Modulator 8CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 Steffen Döbert: “Plans for the drive beam front-end and CLIC zero outlook”, LCWS 2012 avg. power per modulator ~ 180 kW avg. power of 1’600 modulators ~ 300 MW
9
Modulator challenges 9CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 Steffen Döbert: “Plans for the drive beam front-end and CLIC zero outlook”, LCWS 2012
10
Klystron 10CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 Steffen Döbert: “Plans for the drive beam front-end and CLIC zero outlook”, LCWS 2012
11
Klystron 11CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 Steffen Döbert: “Plans for the drive beam front-end and CLIC zero outlook”, LCWS 2012
12
Accelerating structure 12CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 Fundamental principles: full beam loading (RF to beam efficiency ≥ 95%) TWS - SICA (Slotted Iris – Constant Aperture) (+ short range wakefields, efficient HOM damping) filtering of frequencies ~ 4.1 MHz ( T combination ) (+ noise reduction combination scheme) reduction of wakefields by damping and detuning
13
Principle: full beam loading 13CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 input power at acc. structure: 15 MW (peak) dissipated power: 330 kW (peak) lost power at output: 10 kW (peak) power transferred to beam: 14.66 MW => η~ 97.7% unloaded (no beam) loaded
14
Principle: SICA SICA = Slotted Iris – Constant Aperture 3 GHz SICA structures built and operated in CTF 14CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
15
Principle: filtering 15CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 noise at multiples of ~ 4.1 MHz ( 240..250 ns) adds up coherently due to combination scheme t DL ~ 240..250 ns t fill [ns] damping factor D 245 ns D ≈ 1/18 368 ns D ≈ 1/4 124 ns D ≈ 1/4 245 ± 8.5 ns D ≈ 1/17 Erk Jensen => using fill time of acc. structure to filter 4.1 MHz signals before combination T fill = 245 ± 8.5 ns => damping factor 1/17 ~ 6%
16
Principle: wakefield reduction reduction of wakefields by damping and detuning 16CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 …
17
Structure optimisation 17CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 Variables: 1. input power [Pin] 2. structure length = no of cells [N] 3. beam pipe aperture [radius RB] 4. group velocity profile along structure [vgr(n)] Results: 1. RF to beam efficiency [eta], here “1-eta” used 2. fill time
18
Structure optimisation η RF ≥ 97.5 % |t fill – 245 ns| ≤ 5 ns P in = 15 MW Beam dynamic (Avni Aksoy): RB = 49 mm, N = 19 cells 18CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
19
Baseline DB accelerating structure 19CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 P in = 15 MW N = 19 normal cells beam aperture ø = 2*49 = 98 mm unloaded (no beam) loaded group velocity profile acc. gradient avg. dissipated power
20
Baseline DB accelerating structure 20CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 input reflection operating freq. 999.5 MHz P in = 15 MW N = 19 normal cells + 2 couplers structure length = 2.4 m beam aperture ø = 98 mm
21
Baseline structure, detuning curves 21CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 monopole modes dipole modes
22
Baseline structure, wakefields 22CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 longitudinal wakefield transverse wakefields
23
Conclusions Modulator and klystron: challenging specifications R & D has been started, further collaborations are welcome Baseline accelerating structure has been designed input power 15 MW, 19+2 cells, beam aperture ø 98 mm efficiency ≥ 97.5% (fully beam-loaded), filling time 245 ns ± 5 ns wakefields efficiently reduced by damping and detuning Further research on Drive Beam Modules: reduction of total number (combination of klystron power) structure re-optimisation, including fabrication cost 23CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
24
Thank you for your attention 24CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
25
25CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
26
Introduction: CLIC Drive Beam front-end 26CLIC Drive Beam Linac Rolf Wegner25-Oct-2012 Steffen Döbert: “Plans for the drive beam front-end and CLIC zero outlook”, LCWS 2012
27
3 GHz DBA structure – Erk Jensen f acc = 3 GHz P in = 33 MW n cell = 33 Length= 1.22 m Ø outside = 17.4 cm weight ≈ 200 kg 17.4 cm fully beam-loaded, P beam / P RF = 94% Corsini, R et al.: First Full Beam Loading Operation with the CTF3 Linac CERN-AB-2004-057 ; SLAC-PUB-10762 ; CTF-3-NOTE-066 ; CLIC-Note-604 27CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
28
design of TWS gap n R BP E 0 T(n) V acc Ncells P out P in PbPb PbPb constant aperture η= ΔP b /P in t fill mode spectrum constant free parameter v gr,n tapering R a,n φ n =120⁰ 28CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
29
basic cell geometry gap a LaLa R BP RaRa 110 60 11 18R 6 R 9 99.979 typical dimensions 49 29CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
30
30CLIC Drive Beam Linac Rolf Wegner25-Oct-2012
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.