Download presentation
1
Dept. of Materials Science and Engineering
Transformation-induced stress in austenite associated with shape memory effect in NiTi Sourav Gur, Venkateswara Rao Manga, Stefan Bringuier, Krishna Muralidharan, Frantziskonis George Dept. of Materials Science and Engineering University of Arizona
2
The induced tetragonal strain Tensor removes the phonon instability
Quantified transformation-induced strain state of Austenite in the two-phase region The induced tetragonal strain Tensor removes the phonon instability Austenite in the two-phase region - The strain - Temperature dependence
3
NiTi: Austenite (B2)↔(B19’) Martensite phase transformation is displacive
- Phonon instability Softening of TA phonons near zone boundaries - In two-phase (B2+B19’) region: Transformation stresses stabilize B2
4
On the nature of transformation-induced strain in Austenite
εij(B2) strain superelasticity Characteristic internal strain tensor that makes B2 stable in two-phase region - shape memory effect - superelasticity Objectives: Using molecular dynamics simulations What is the internal strain state (i.e. strain tensor) of austenite in the two-phase region associated with the shape memory effect in NiTi? Temperature dependence of the strain?
5
B2-B19’ phase transformation as a function of temperature
250 K 330 K 370 K 450 K
6
B19’ phase fraction as a function of temperature
Size-I : 25 Å X 25 Å X 200 Å Size-II: 50 Å X 50 Å X 200 Å Size-III: 75 Å X 75 Å X 200 Å Phase fractions from sufficiently large supercells
7
Martensite phase fraction as a function of temperature
- Richards equation[Richards] – for growth of plant population - Zotov et al. used to describe the evolution of phase fractions [zotov et al] Tm --- temperature for maximum transformation rate g, v – dictate the transformation rate Zotov et al. Journal of alloys and compounds 616(2014)385 Richards J. Exp. Bot 10 (1959) 290
8
Strained lattice parameters of Austenite phase as a function of temperature
Unstrained lattice parameter extrapolated (001) (010) (100) strained-B2 εin[100] = (a[100]-aunstrained)/aunstrained In the two-phase region aunstrained of B2 is obtained by extrapolation
9
Measured principal strains on Austenite phase as a function of temperature
(001) (010) (100) strained-B2 εin[010] = εin[100] Strain state of austenite in two-phase region : tetragonal strain εin[001] What equation based on phenomenology best describes the strain as function of T?
10
The relationship between Martensite fraction and the principal strains in Austenite
Richard equation ?
11
Strain in austenite as a function of temperature
The relationship between Martensite fraction and the principal strains in Austenite Martensite phase fraction with temperature [Zotov et al.] Martensite phase fraction with internal strain on austenite phase, in [100] or [010] direction: ε0= Strain in austenite as a function of temperature
12
Variation of strain in austenite as a function of temperature
a1= , b1=2.451 a2= , b2=8.643
13
Phonon dispersion of austenite phase with and without lattice strain at 364 K
Austenite at T=364 K with no strain Austenite at T=364 K with no calculated strains - In two-phase region (austenite + martensite): - the phonon instability dissappears due to the transformation induced strains/stress in austenite - The principal strains are quantified
14
Summary The transformation-induced strain state in austenite in the two-phase region associated with shape memory effect in NiTi is quantified Tetragonal-form strain tensor is found to stabilize the austenite The strain that removes the phonon instability is found to vary exponentially with temperature
15
Acknowledgment We thank Dr. Ting Zhu (Woodruff school of mechanical engineering at Georgia Institute of Technology) for the EAM potential
16
The Austenite (B2)↔(B19’)Martensite phase transformation is displacive
- Phonon instability Softening of TA phonons near zone boundaries - In two-phase (B2+B19’) region: Transformation stresses stabilize B2 What is the internal-strain state (i.e. strain tensor) of austenite in the two-phase region associated with the shape memory effect? Is the strain tensor of a particular type over the entire range? εij(B2) strain superelasticity
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.