Presentation is loading. Please wait.

Presentation is loading. Please wait.

ASRR Conference: Engineered Resilient Systems Panel Ensuring Engineered Resilient Total-Ship Systems: Using More Physics-Based Design Tools in Early Concept.

Similar presentations


Presentation on theme: "ASRR Conference: Engineered Resilient Systems Panel Ensuring Engineered Resilient Total-Ship Systems: Using More Physics-Based Design Tools in Early Concept."— Presentation transcript:

1 ASRR Conference: Engineered Resilient Systems Panel Ensuring Engineered Resilient Total-Ship Systems: Using More Physics-Based Design Tools in Early Concept Design Bob Keane, Ship Design USA, Inc. 5 October 2011 Opinions are those of the author and not those of any Government agency or program.

2 Inseparable Resilience Issues Dr. Robert Neches, OASD(R&E), 31 March 2011 Rapidly Adapting to User Needs –Warfighter / Engineer Information Exchange Accelerated Needs Exploration: Conceptual Design –Co-Evolution of ConOps & Systems for Multiple Alternative Futures Accelerated Design-to-Build: Capability Engineering Advances must be embedded in tools and environments accessible to Government and industry – Systems 2020 2

3 5/3-6/05Summer Naval Surface Ship Design Program3 A “system of systems”: Operate in battle force with older and newer ships Very low quantities, high unit cost, long lives Extremely complex product: millions of piece parts No prototypes, first ship(s) must be fully operational Government develops combat/weapons/communications systems Government ultimately assumes responsibility for meeting requirements Lack of commercial shipbuilding industrial base to build upon Intense Congressional oversight Nature of the Product-A Warship

4 5/3-6/05Summer Naval Surface Ship Design Program4 USS MIDWAY 50-Year Global Crisis Response Italy Elections 1947 Lebanon 1950 Earnest Will 1987–1988 Desert Shield / Desert Storm 1990–91 Iranian Hostage Crisis 1979 Afghanistan Invasion 1979 Laos 1961 Vietnam 1965–1975 Philippine Coup 1989 Quemoy- Matsu 1958 Korean Tree Incident 1976 Fiery Vigil 1991

5 The General Board Naval War College OpNav The Bureaus The General Board Naval War College OpNav The Bureaus The Fleet Collaborative Innovation in Fleet Design, 1922-1941 Agents of Innovation: The General Board and the Design of the Fleet That Defeated the Japanese Navy, John T. Kuehn, Naval Institute Press, 2008

6 MIT'S VON HIPPEL: INNOVATION, LEAD USER ANALYSIS, CUTTING CONCEPT TIME & COST “…sometimes it's a waste of time and resources to try to understand customer needs… sometimes it's less expensive and more efficient to – let your customers define the needs, –limit yourself to offering solutions, and –let the customers design based on that.” 6

7 Experience and the Right Tools Make A BIG Difference Average Cost Growth for Lead Ship was 10%** 1980s Reagan Buildup: Average Cost Growth for Lead Ship was 10%** –NAVSEA Highly Experienced Ship Design Workforce –User-Driven Design Average Cost Growth for Lead Ship was 50%** 1990/2000s Acquisition Reform: Average Cost Growth for Lead Ship was 50%** –Inexperienced Industry Design Teams –Mfr.-Driven Design Lack of Experience Smart, Physics- Based ToolsTools Highly Experienced Smart, Physics- Based Tools Rule-Based Tools Lack of Experience Rule-Based Tools Highly Experienced Experience ** SEA 05C, June 2008

8 8 Seaway Loads for Design of Surface Combatants: Rule-Based Design Structural Design of FFG 7, CG 47, DDG 51 Classes –Interested more in extreme loading conditions than actual loads which contribute to fatigue –Worked with simplified loading envelopes –Deterministic analysis resulted in scantlings for maximum load expected –Highly random wave-induced loads were set of simplified hydrostatic loads under extreme seas No Physics-Based Computations nor Seakeeping Model Tests to Determine Actual Seaway Loads

9 9 Lack of Physics-Based Design Tools: Increased Ownership Costs FFG 7 Class –Hull girder doubler plates & ballast added –Extensive deckhouse fatigue cracking CG 52 Class (with VLS) –Serious hull cracking and buckling problem –Extensive superstructure fatigue cracking DDG 51 Class –Bow structure buckling and cracking issue Operational loads exceeded rule-based design loads $100M’s in repairs for sustaining service-lives

10 10 “Outside-In Design” “Outside-In Design” – Start with Hull Form, Then Cram Everything into Hull Hull is sized and shaped in early design based on: –unreliable weight and area/volume estimates –invalid assumption volume is “arrangeable” –fallacy that limiting hull size limits ship costs Need architectural tools to optimize arrangements

11 11 Ships Possessing Greater Density Increase Production Cost Ship Production hours increase with density and fall into predictable groupings.

12 12 WHERE WE NEED TO GO According to an old proverb, if we do not change our direction, we might end up where we are headed.

13 13 Systems Engineering – Ensure “Elegant” Designs* Effective – it does what it is supposed to do Efficient – to produce, operate, maintain Robust - insensitive to variations in operations Minimal Unintended Consequences – few band aids required to fix it in-service * M. Griffin, Former NASA Director, Dean’s Seminar, SIT, “How do we fix System Engineering?”, 13 Dec 2010

14 14 Toward Robust Systems Engineering: CREATE-SHIPS Project Computational Research & Engineering for Acquisition Tools & Environments (CREATE): –Replace empirical design with validated physics- based computational design –Detect and fix design flaws early in design process –Develop optimized designs for new concepts –Begin system integration earlier in acquisition process –Increase acquisition program flexibility and agility to respond to rapidly changing requirements DoD High Performance Computing Modernization Program

15 15 Integrated Hydrodynamics Design Environment - IHDE ASSET/LEAPS Geometry Problem Set Up Conditions Automated Gridding SSF TSD SMP VERES AEGIR DAS BOOT FREDYN TEMPEST NavyFOAMLAMP LOADSPOWERINGRESISTANCEMANEUVERINGSEAKEEPING AUTOMATED VALIDATION CASES DESIGN STUDIES SHAPE OPTIMIZATION HPCMP DRIVER/GUI LOCAL HPC

16 Rapid Ship Design Environment (RSDE) Architecture 9/8/201516 LEAPS Database R apid S hip D esign E nvironment GUI ASSET Synthesis Hullform Gen/Trans IHDE Hydro ISA Arrangement SHCP-L Stability Behavior ObjectZ Flooding Behaviors Structures Behaviors Seakeeping Behaviors Stability Behaviors GEML Kernel NURBS Math Radial Basis Math Kriging Math Neural Net Math Execution Engine Multi-Discipline Optimization Design Space Exploration Resistance Behaviors Hullform Geometry Arrangement Geometry LEAPS API and Toolkits Design Data Sets BehaviorMan TktHulltran Tkt Hullgen Tkt SHCP-L Tkt Structure Geometry Subdivision Geometry 9/8/201516

17 17 Modeling Warships in the Ocean Battle Space: Way Ahead Need to start co-evolution of ConOps & systems for multiple alternative futures long before Milestone A –Continuing process not tied to specific acquisitions Need engineers to have unfettered access to warfighters –Accelerated exploration during concept formulation –Collaborative process exploring new/radical innovations Need more physics-based tools for concept design with –Timely pre-processing of system geometry –Timely post-processing of results into decision aids Need to reconstitute DoD S&T infrastructure –DoD Labs resume their advanced development role

18 CISD Overview - March 201018 Center of Innovation in Ship Design is: The hub of a national collaborative enterprise combining the best ideas and experience of government, industry, and academia in ship design CISD Mission: CISD Mission: Ensure the Future Capability (People, Tools and Knowledge) of the Nation to Develop Innovative Ship Designs to Effectively Meet Defense Needs Focus Areas: Navy of the Future Develop Future Ship Designers Knowledge Base / Design Tools & Processes Future Ship & Ship Design Technology Needs Develop Innovative Ship Design Concepts Chartered by ONR, NAVSEA 05 & NSWC APPROVED FOR PUBLIC RELEASE


Download ppt "ASRR Conference: Engineered Resilient Systems Panel Ensuring Engineered Resilient Total-Ship Systems: Using More Physics-Based Design Tools in Early Concept."

Similar presentations


Ads by Google