Download presentation
Presentation is loading. Please wait.
Published byMildred Palmer Modified over 9 years ago
1
Kaiserslautern, April 2006 Quantum Hall effects - an introduction - AvH workshop, Vilnius, 03.09.2006 M. Fleischhauer
2
Kaiserslautern, April 2006 quantum Hall history discovery: 1980 Nobel prize: 1985 K. v. Klitzing H. Störmer R. Laughlin D. Tsui discovery: 1982 Nobel prize: 1998 IQHE FQHE
3
Kaiserslautern, April 2006 classical Hall effect (1880 E.H. Hall) Lorentz-force on electron: stationary current: Hall resistance: Dirac flux quantum 2
4
Kaiserslautern, April 2006 Landau levels
5
Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels coordinate transformation: Hamiltonian: R X electron center of cyclotron motion radial vector of cyclotron motion commutation relations:
6
Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels mapping to oscillator: H = h R² / 2 l² = h ( a a + ½ ) cc m † Landau levels
7
Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels typical scales: length magnetic length energy cyclotron frequency
8
Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels degeneracy of Landau levels: center of cyclotron motion (X,Y) arbitrary degeneracy 2D density of states (DOS) filling factor one state per area of cyclotron orbit # atoms / # flux quanta
9
Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels wavefunction of lowest Landau level (LLL) in symmetric gauge symmetric gauge Landau gauge introduce complex coordinate LLL analytic b
10
Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels angular momentum of Landau levels: eigenstates of n´ th Landau level: angular momentum states of LLL:
11
Kaiserslautern, April 2006 2D electrons in magnetic fields: Landau levels j wavefunction:
12
Kaiserslautern, April 2006 Integer Quantum Hall effect
13
Kaiserslautern, April 2006 Integer Quantum Hall effect spinless (for simplicity) and noninteracting electrons: Pauli principle Slater determinant:
14
Kaiserslautern, April 2006 Integer Quantum Hall effect compressibility: at integer fillings:
15
Kaiserslautern, April 2006 Integer Quantum Hall effect Hall current: Heisenberg drift equations of cycoltron center no plateaus ?!
16
Kaiserslautern, April 2006 Integer Quantum Hall effect Hall plateaus: impurities gap ! impurities pin electrons to localized states electrons in impurity states do not contribute to current gap impurity states fill first
17
Kaiserslautern, April 2006 Fractional Quantum Hall effect
18
Kaiserslautern, April 2006 Fractional Quantum Hall effect Laughlin state: take e-e interaction into account generic wavefunction requirements wave function anstisymmetric eigenstate of angular momentum Coulomb repulsion Jastrow-type of wave function Laughlin wave function
19
Kaiserslautern, April 2006 Fractional Quantum Hall effect angular momentum of Laughlin wave function and filling factor maximum single-particle angular momentum filling factor of Laughlin state
20
Kaiserslautern, April 2006 Fractional Quantum Hall effect fractional Hall plateaus: fractional Hall states are gapped = 1 = 1/3 = 1/5 = 1/7
21
Kaiserslautern, April 2006 composite particle picture of FQHE
22
Kaiserslautern, April 2006 composite particle = electron + m magnetic flux quanta composite particle picture of FQHE + = composite fermion composite boson effective magnetic field composite particle are anyons (fractional statistics) exist only in 2D
23
Kaiserslautern, April 2006 composite particle picture of FQHE some remarks about anyons: two-particle wave function exchange particles exchange particles a second time in 3D: Boson Fermion 3D:no projected area in (xy) 2D always projected area in (xy) particles can pick up e.g. Aharanov-Bohm phase AB AB
24
Kaiserslautern, April 2006 composite particle picture of FQHE = 1 / m FQE (A) electron + flux quanta form composite boson 0 Bose condensation of composite bosons (B) electron + flux quanta form composite fermion IQHE for composite fermions
25
Kaiserslautern, April 2006 composite particle picture of FQHE Jain hierarchy: experiment: FQHE also for composite fermion picture: since
26
Kaiserslautern, April 2006 FQHE for interacting bosons FQHE for interacting bosons
27
Kaiserslautern, April 2006 FQHE for interacting bosons exact diagonalization FQH effect for Laughlin state for point interaction composite fermions: boson + single flux quantum + = IQHE for composite fermions
28
Kaiserslautern, April 2006
29
effective magnetic fields in rotating traps
30
Kaiserslautern, April 2006 atoms in dark states |1>|2> |0> γ Ω Ω s p Δ Ω - D + adiabatic eigenstates: γ γ for dark states see e.g.: E. Arimondo, Progress in Optics XXXV (1996) dark state (no fluoresence): p s
31
Kaiserslautern, April 2006 R. Dum & M. Olshanii, PRL 76, 1788 (1996) transformation to local adiabatic basis: gauge potential A + scalar potential |1>|2> |0> ΩΩ s p center of mass motion of atoms in dark states space-dependent dark states & atomic motion:
32
Kaiserslautern, April 2006 effective vector potential & magnetic field relative momentum vector difference of „center of mass“ of light beams relative orbital angular momentum needed ! (i) magnetic fields ΩΩ s p
33
Kaiserslautern, April 2006 magnetic fields: (a) vortex light beams G. Juzeliūnas and P.Öhberg, PRL 93, 033602 (2004) P. Öhberg, J. Ruseckas, G. Juzeliunas, M.F. PRA 73, 025602 (2006) external trap B V ratio of fields eff
34
Kaiserslautern, April 2006 magnetic fields: (b) shifted light beams x y z Quantum-Hall effect in non-cylindrical systems non-stationary situation possible (current in z) B V eff = x xx
35
Kaiserslautern, April 2006 (ii) non-Abelian gauge fields J. Ruseckas, G. Juzeliunas, P. Öhberg, M.F. Phys.Rev.Lett 95 010404 (2005) more than one relevant adiabatic state ! TRIPOD scheme DD 12 Ω 2 x 2 vector matrix
36
Kaiserslautern, April 2006 magnetic monopole field Ω 1 2 3 Ω Ω singularity lines point singularity at the origin
37
Kaiserslautern, April 2006 summary motion of atom in space-dependent dark states gauge potential A light beams with relative OAM magnetic field B degenerate dark states non-Abelian magnetic fields (monopoles,...) vortex light beams displaced beams (non-cylindrical geometry, currents)
38
Kaiserslautern, April 2006 quantum gases as many-body model systems lattice models: BCS – BEC crossover: Bose-Hubbard model; Bose-Fermi-H. model; spin models Feshbach resonances; fermionic superfluidity quantum-Hall physics: rotating traps vortices, vortex lattices; lowest Landau level
39
Kaiserslautern, April 2006 quantum gases as many-body model systems quantum-Hall physics: rotating traps vortices, vortex lattices; lowest Landau level
40
Kaiserslautern, April 2006 external trap B V magnetic fields: (a) vortex light beams ratio of fields eff
41
Kaiserslautern, April 2006 ultra-cold atoms & molecules many-body & solid-state physics instruments of quantum optics & coherent control
42
Kaiserslautern, April 2006 quantum-Hall physics Ф filling factor quantum effects: ~ 1 = N # flux quanta ~ N # atoms (R / l ) m 2 hydrodynamics: >> 1 0
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.