Download presentation
Presentation is loading. Please wait.
Published byEugene Hood Modified over 9 years ago
2
1 線性代數 LINEAR ALGEBRA 李程輝 國立交通大學電信工程學系
3
2 教師及助教資料 教師:李程輝 Office Room: ED 828 Ext. 31563 助教:林建成 邱登煌 Lab: ED 823 E-mail: aircheng.cm94g@nctu.edu.tw ; s413543.cm94g@nctu.edu.tw Ext. 54570 課程網址 http://banyan.cm.nctu.edu.tw/linearalgebra2006
4
3 教科書 Textbook: S.J. Leon, Linear Algebra with Applications, 7 th Ed., Prentice Hall, 2006. Reference: R. Larson and B.H. Edwards, Elementary Linear Algebra, 4 th Ed., Houghton Mifflin Company, 2000.
5
4 成績算法 正式考試 3 次 ( 各 30%) 作業 (10%)
6
5 Several Applications How many solutions do have? It may have none, one or infinitely many solutions depending on rank(A) and whether or not.
7
6 How to solve the following Lyapunov and Riccati equations: Matrix Theory
8
7 Find the local extrema of definiteness of the Hessian matrix. How to determine the definiteness of a real symmetric matrix? eigenvalues
9
8 How to determine the volume of a parallelogram? Determinant
10
9 How to find the solutions or characterize the dynamical behaviors of a linear ordinary differential equation? Eigenvalues, Eigenvectors vector space and linear independency
11
10 How to predict the asymptotic( Steady-state) behavior of a discrete dynamical system ( p280.) Eigenvalues & Eigenvectors
12
11 Given Find the best line to fit the data. i.e., find is minimum Least Square problem (Orthogonal projection)
13
12 How to expand a periodic function as sum of different harmonics? ( Fourier series) Orthogonal projection
14
13 How to approximate a matrix by as few as data? Digital Image Processing Singular Value Decomposition
15
14 How to transform a dynamical system into one which is as simple as possible? Diagnolization, eigenvalues and eigenvectors
16
15 How to transform a dynamical system into a specific form ( e.g., controllable canonical form) Change of basis
17
16 課程簡介 Introduction to Linear Algebra Matrices and Systems of Equations Systems of Linear Equations Row Echelon Form Matrix Algebra Elementary matrices Partitioned Matrices Determinants The Determinants of a Matrix Properties of Determinants Cramer’s Rule
18
17 Vector Spaces Definition and Examples Subspace Linear Independence Basis and Dimension Change of Basis Row Space and Column Space Linear Transformations Definition and Examples Matrix Representations of Linear Transformations Similarity
19
18 Orthogonality The Scalar Product of Euclidean Space Orthogonal Subspace Least Square Problems Inner Product Space Orthonormal Set Eigenvalues Eigenvalues and Eigenvectors Systems of Linear Differential Equations Diagonalization Hermitian Matrices The Singular Value Decomposition
20
19 Quadratic Forms Positive Definite Matrices
21
20 Exercise for Chapter 1 P.11: 9,10 P.28: 8,9,10 P.62: 12,13,21,*22,23,27 P.76: 3(a,c),*6,12,18,23 P.87: *18 P.97: Chapter test 1-10
22
21 Exercise for Chapter 2 P.105: 1,*11 P.112: 5-8,*10-12 P.119: 2(a,c),4,7,*8,11,12 P.123: Chapter test 1-10
23
22 Exercise for Chapter 3 P.131: 3-6,13,15 P.142: 1,*3,5-9,13,14,16-20 P.154: 5,*7-11,14-17 P.161: 3,*5,7,9,11,13,15,16 P.173: 1,4,*7,10,11 P.180: 3,6-9,12,*13,16,17,19-21 P.186: Chapter test 1-10
24
23 Exercise for Chapter 4 P.195: 1,8,*9,12,16,18-20,23,24 P.208: *3,5,11,13,18 P.217: *5,7,8,10-15 P.221: Chapter test 1-10
25
24 Exercise for Chapter 5 P237: 6,7,10,*13,14. P247: 2,9,11,*13,14,16. P258: *5,7,9,10,12 P267: 4,8,9,26,*27,28,29 P286: 2,4,*12~14,16,19,22,23,25,33 P297: 3~5,12,*4 P310: Chapter test 1~10
26
25 Exercise for Chapter 6 P323 : 2~16, 18, *19, 22~*25, 27 P351 : 1 (a)*(e), 4, 6, 7, 9~12, 16~18, 23(b), 24(a), 25~28 P363 : 8, 10~*13, *19, 21 P380 : *5, 6 P395 : 3(a)(b), 7(a)(b), 8~14, *12 P403 : *3, 8~13 P421 : Chapter test 1~10
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.