Download presentation
Presentation is loading. Please wait.
Published byShanna Rice Modified over 9 years ago
1
Geometric Representations of Graphs Jan Kratochvíl, DIMATIA, Prague
2
Intersection Graphs {M u, u V G } uv E G M u M v
3
String Graphs {M u, u V G } uv E G M u M v
4
Personal Recollections 1982 – Czech-Slovak Graph Theory, Prague
5
Personal Recollections 1982 – Czech-Slovak Graph Theory, Prague 1983 – Prague 1990 – Tempe, Arizona
6
Personal Recollections 1982 – Czech-Slovak Graph Theory, Prague 1983 – Prague 1990 – Tempe, Arizona 1988 – Bielefeld, Germany
7
Intersection Graphs Every graph is an intersection graph.
8
Intersection Graphs Every graph is an intersection graph. M u = {e E G | u e}
9
Intersection Graphs Every graph is an intersection graph. uv E G M u M v M u = {e E G | u e}
10
Intersection Graphs Every graph is an intersection graph Restricting the sets
11
Intersection Graphs Every graph is an intersection graph Restricting the sets – by geometrical shape Motivation and applications in scheduling, biology, VLSI designs …
12
Intersection Graphs Every graph is an intersection graph Restricting the sets – by geometrical shape Motivation and applications in scheduling, biology, VLSI designs … Nice characterizations, interesting theoretical properties, challenging open problems
13
Few Examples
14
Interval graphs Interval graphs - Gilmore, Hoffman 1964 Fulkerson, Gross 1965 Booth, Lueker 1975 Trotter, Harary 1979 …
15
Few Examples Interval graphs Interval graphs - - neat characterization chordal + co-comparability - recognizble in linear time - most optimization problems solvable in polynomial time - perfect
16
Few Examples SEG graphs SEG graphs - Ehrlich, Even, Tarjan 1976 Scheinerman Erdös, Gyarfás 1987 JK, Nešetřil 1990 JK, Matoušek 1994 Thomassen 2002
17
Few Examples SEG graphs SEG graphs - - recognition NP-hard and in PSPACE, NP-membership open - coloring, independent set NP-hard, complexity of CLIQUE open - near-perfectness open
18
Near-perfect graph classes A graph class G is near-perfect if there exists a function f such that (G) f( (G)) for every G G.
19
Few Examples String graphs String graphs - Sinden 1966 Ehrlich, Even, Tarjan 1976 JK 1991 JK, Matoušek 1991 Pach, Tóth 2001 Štefankovič, Schaffer 2001, 2002
20
Few Examples CONV graphs CONV graphs - Ogden, Roberts 1970 JK, Matoušek 1994 Agarwal, Mustafa 2004 Kim, Kostochka, Nakprasit 2004
21
Few Examples PC graphs PC graphs - Fellows 1988 Koebe 1990 JK, Kostochka 1994 Spinrad JK, Pergel 2002 Pergel 2007
22
Few Examples Circle graphs Circle graphs - De Fraysseix 1984 Bouchet 1985 Gyarfas 1987 Unger 1988 Kloks 1993 Kostochka 1994
23
Few Examples Circle graphs Circle graphs - - recognizable in linear time - coloring NP-hard - independent set, clique solvable in polynomial time - near-perfect log O(2 ) - close bounds open
24
Few Examples Circular Arc graphs Circular Arc graphs - Tucker 1971, 1980 Gavril 1974 Gyarfás 1987 Spinrad 1988 Hell, Bang-Jensen, Huang 1990 …
25
Few Examples Circular Arc graphs Circular Arc graphs - Tucker 1971, 1980 Gavril 1974 Gyarfás 1987 Spinrad 1988 Hell, Bang-Jensen, Huang 1990 …
29
Outline String graphs CONV and PC graphs Representations of planar graphs
30
1. String graphs Sinden 1966
31
1. String graphs Sinden 1966 = IG(regions)
32
1. String graphs Sinden 1966 = IG(regions) Graham 1974
33
1. String graphs Sinden 1966 JK, Goljan, Kučera 1982
34
1. String graphs Sinden 1966 JK, Goljan, Kučera 1982 Thomas 1988 IG(topologically con) = all graphs, String = IG(arc-connected sets)
35
1. String graphs Sinden 1966 JK, Goljan, Kučera 1982 Thomas 1988 JK 1991 – NP-hard
36
1. String graphs SEG CONV STRING
37
1. String graphs SEG CONV STRING
38
1. String graphs Sinden 1966 JK, Goljan, Kucera 1982 Thomas 1988 JK 1991 – NP-hard Recognition in NP?
39
1. String graphs Sinden 1966 JK, Goljan, Kucera 1982 Thomas 1988 JK 1991 – NP-hard Recognition in NP?
40
Abstract Topological Graphs G = (V,E), R { ef : e,f E } is realizable if G has a drawing D in the plane such that for every two edges e,f E, D e D f ef R G = (V,E), R = is realizable iff G is planar
41
Worst case functions Str(n) = min k s.t. every string graph on n vertices has a representation with at most k crossing points of the curves At(n) = min k s.t. every AT graph with n edges has a realization with at most k crossing points of the edges Lemma: Str(n) and At(n) are polynomially equivalent
42
String graphs requiring large representations Thm (J.K., Matoušek 1991): At(n) 2 cn
47
1. String graphs Sinden 1966 JK, Goljan, Kucera 1982 Thomas 1988 JK 1991 – NP-hard Recognition in NP? Are they recognizable at all?
48
Thm (Pach, Tóth 2001): At(n) n n Thm (Schaefer, Štefankovič 2001): At(n) n2 n-2
49
1. String graphs Sinden 1966 JK, Goljan, Kučera 1982 JK 1991 – NP-hard Schaefer, Sedgwick, Štefankovič 2002 – String graph recognition is in NP (Lempel- Ziv compression)
50
1. Some subclasses
52
Complements of Comparability graphs (Golumbic 1977)
53
Co-comparability graphs
55
=
56
Co-comparability graphs
58
1. Some subclasses “Zwischenring” graphs NP-hard (Middendorf, Pfeiffer)
59
1. Some subclasses Outerstring graphs NP-hard (Middendorf, Pfeiffer)
60
1. Some subclasses Outerstring graphs NP-hard (Middendorf, Pfeiffer)
61
1. Some subclasses Interval filament graphs (Gavril 2000) CLIQUE and IND SET can be solved in polynomial time
62
2. CONV and PC JK, Matoušek 1994 – recognition in PSPACE
63
Thm: Recognition of CONV graphs is in PSPACE Reduction to solvability of polynomial inequalities in R: x 1, x 2, x 3 … x n R s.t. P 1 (x 1, x 2, x 3 … x n ) > 0 P 2 (x 1, x 2, x 3 … x n ) > 0 … P m (x 1, x 2, x 3 … x n ) > 0 ?
64
{M u, u V G } uv E G M u M v MuMu MvMv MwMw MzMz
65
MuMu MvMv MwMw MzMz Choose X uv M u M v for every uv E G X uw X uz X uv
66
C u C v M u M v uv E G MuMu MvMv MwMw MzMz Replace M u by C u = conv(X uv : v s.t. uv E G ) M u X uw X uz X uv
67
Introduce variables x uv, y uv R s.t. X uv = [x uv, y uv ] for uv E G
68
uv E G C u C v guaranteed by the choice C u = conv(X uv : v s.t. uv E G )
69
Introduce variables x uv, y uv R s.t. X uv = [x uv, y uv ] for uv E G uv E G C u C v guaranteed by the choice C u = conv(X uv : v s.t. uv E G ) uw E G C u C w = separating lines
70
Introduce variables x uv, y uv R s.t. X uv = [x uv, y uv ] for uv E G uv E G C u C v guaranteed by the choice C u = conv(X uv : v s.t. uv E G ) uw E G C u C w = separating lines CuCu CwCw a uw x + b uw y + c uw = 0
71
Introduce variables x uv, y uv R s.t. X uv = [x uv, y uv ] for uv E G uv E G C u C v guaranteed by the choice C u = conv(X uv : v s.t. uv E G ) uw E G C u C w = separating lines CuCu CwCw a uw x + b uw y + c uw = 0 Representation is described by inequalities (a uw x uv + b uw y uv + c uw ) (a uw x wz + b uw y wz + c uw ) < 0 for all u,v,w,z s.t. uv, wz E G and uw E G X uv X wz
72
2. Recognition – NP-membership “Guess and verify”
73
2. Recognition – NP-membership “Guess and verify” -INT, CA, CIR, PC, Co-Comparability -IFA – mixing characterization - CONV, SEG ? !! String – Lempel-Ziv compression
74
2. Recognition – NP-membership Thm (JK, Matoušek 1994): For every n there is a graph G n SEG with O(n 2 ) vertices s.t. every SEG representation with integer endpoints has a coordinate of absolute value 2 2 n. Same for CONV (Pergel 2008).
75
2. CLIQUE in CONV graphs -CO-PLANAR CONV (JK, Kuběna 99)
82
2. CLIQUE in CONV graphs -CO-PLANAR CONV (JK, Kuběna 99) -Corollary: CLIQUE is NP-complete for CONV graphs. (Since INDEPENDENT SET is NP-complete for planar graphs.) -CLIQUE in SEG graphs still open (JK, Nešetřil 1990)
83
2. CLIQUE in MAX-TOL graphs
84
2. MAX-TOLERANCE (Golumbic, Trenk 2004)
85
2. MAX-TOLERANCE S R S = {I u | u V G } intervals, t u R tolerances uv E G iff |I u I v | ≥ max {t u, t v }
86
2. MAX-TOLERANCE Theorem (Kaufmann, JK, Lehmann, Subramarian, 2006): Max-tolerance graphs are exactly intersection graphs of homothetic triangles (semisquares)
87
2. MAX-TOLERANCE IuIu tutu TuTu IvIv TvTv
88
Lemma (folklore): Disjoint convex polygons are separated by a line parallel to a side of one of them.
89
A B C
90
Maximal cliques Q a maximal clique
91
Maximal cliques h highest basis of Q, v rightmost vertical side, t lowest diagonal side Q a maximal clique t h v
92
Maximal cliques Q(h,v,t) = all triangles that intersect h,v and t Q a maximal clique t h v
93
Claim: Q(h,v,t) = Q
94
Proof: 1) Q Q(h,v,t) h
95
Claim: Q(h,v,t) = Q Proof: 1) Q Q(h,v,t) 2) Q(h,v,t) is a clique
96
Claim: Q(h,v,t) = Q Proof: 1) Q Q(h,v,t) 2) Q(h,v,t) is a clique Suppose a,b Q(h,v,t) are disjoint, hence separated by a line parallel to one of the sides, say horizontal.
97
Claim: Q(h,v,t) = Q Proof: 1) Q Q(h,v,t) 2) Q(h,v,t) is a clique a b
98
Claim: Q(h,v,t) = Q Proof: 1) Q Q(h,v,t) 2) Q(h,v,t) is a clique b cannot intersect h, a contradiction a b h
99
Maximal cliques Q(h,v,t) = all triangles that intersect h,v and t Hence G has O(n 3 ) maximal cliques. Q a maximal clique t h v
100
2. Polygon-circle graphs PC graphs PC graphs - Fellows 1988 Koebe 1990 JK, Kostochka 1994 Spinrad JK, Pergel 2002 Pergel 2007
101
2. Polygon-circle graphs PC graphs PC graphs - Fellows 1988 Koebe 1990 JK, Kostochka 1994 Spinrad JK, Pergel 2002 Pergel 2007
102
2. Polygon-circle graphs PC graphs PC graphs - Fellows 1988 Koebe 1990 JK, Kostochka 1994 Spinrad JK, Pergel 2002 Pergel 2007
103
2. Polygon-circle graphs CIR PC IFA CA CHOR
104
2. Polygon-circle graphs CIR PC IFA CA CHOR
105
2. Polygon-circle graphs CIR PC IFA CA CHOR Pergel 2007
106
2. Polygon-circle graphs CIR PC IFA CA CHOR Pergel 2007
107
2. Short cycles Do short cycles help?
108
2. Short cycles Do short cycles mind? Does large girth help?
109
DISK UNIT-DISK
110
DISK UNIT-DISK PSEUDO-DISK
111
2. Short cycles Thm (J.K. 1996) Triangle-free intersection graphs of pseudodisks are planar.
112
2. Short cycles Thm (J.K. 1996) Triangle-free intersection graphs of pseudodisks are planar.
113
2. Short cycles Thm (J.K. 1996) Triangle-free intersection graphs of pseudodisks are planar. Corollary: Recognition of triangle-free PSEUDO-DISK and DISK graphs is polynomial.
114
Koebe (1936)
117
2. Short cycles Thm (J.K. 1996) Triangle-free STRING graphs are NP-hard to recognize.
118
2. Short cycles Thm (J.K. 1996) Triangle-free STRING graphs are NP-hard to recognize. Thm (JK, Pergel 2007) PC graphs of girth 5 can be recognized in polynomial time. Thm (JK, Pergel 2007) For each k, recognition of SEG graphs of girth k is NP-hard.
119
2. Short cycles Problem: Is recognition of String graphs of girth k NP-complete for every k ? Thm (JK, Pergel 2007) PC graphs of girth 5 can be recognized in polynomial time. Thm (JK, Pergel 2007) For each k, recognition of SEG graphs of girth k is NP-hard.
120
3. Representations of planar graphs
122
- Planar graphs are exactly contact graphs of disks (Koebe 1934)
123
3. Representations of planar graphs -Planar graphs are exactly contact graphs of disks (Koebe 1934) -PLANAR DISK -PLANAR CONV -PLANAR 2-STRING
127
3. Representations of planar graphs -PLANAR 2-STRING -Problem (Fellows 1988): Planar 1-STRING ? -True: Chalopin, Gonçalves, and Ochem [SODA 2007]
128
3. Representations of planar graphs -PLANAR 2-STRING -Problem (Fellows 1988): Planar 1-STRING ? -True: Chalopin, Gonçalves, and Ochem [SODA 2007] - Problem: PLANAR SEG? (Pollack, Scheinerman, West, …)
129
3. Representations of planar graphs -PLANAR SEG (?) -3-colorable 4-connected triangulations are intersection graphs of segments (de Fraysseix, de Mendez 1997) -Planar triangle-free graphs are in SEG (Noy et al. 1999) -Planar bipartite graphs are grid intersection (Hartman et al. 91; Albertson; de Fraysseix et al.)
130
3. Bipartite planar graphs De Fraysseix, Ossona de Mendez, Pach d c f e b a 1 2 35 6 4 7 a b c d e f 1234567
131
3. Bipartite planar graphs De Fraysseix, Ossona de Mendez, Pach a b c d e f 1234567
132
3. Bipartite planar graphs De Fraysseix, Ossona de Mendez, Pach a b c d e f 1234567
133
3. Representations of planar graphs -PLANAR CONV -Planar graphs are contact graphs of triangles (de Fraysseix, Ossona de Mendez 1997)
135
3. Representations of planar graphs -PLANAR CONV -Planar graphs are contact graphs of triangles (de Fraysseix, Ossona de Mendez 1997) -Are planar graphs contact graphs of homothetic triangles?
136
3. Representations of planar graphs -PLANAR CONV -Planar graphs are contact graphs of triangles (de Fraysseix, Ossona de Mendez 1997) -Are planar graphs contact graphs of homothetic triangles? -No
137
3. Representations of planar graphs 1 2 3 b c a
138
1 2 3 b c a 1 2 3 ab c
139
1 2 3 b c a 1 2 3 ab c
140
3. Planar – open problems -PLANAR MAX-TOL? (Lehmann) (i.e. are planar graphs intersection graphs of homothetic triangles?)
141
3. Planar – open problems -PLANAR MAX-TOL? (Lehmann) -Conjecture (Felsner, JK 2007): Planar 4-connected triangulations are contact graphs of homothetic triangles.
142
3. Planar – open problems -PLANAR MAX-TOL? (Lehmann) -Conjecture (Felsner, JK 2007): Planar 4-connected triangulations are contact graphs of homothetic triangles. This would imply that planar graphs are intersection graphs of homothetic triangles.
143
3. Representations of planar graphs 1 2 3 b c a ab c
144
1 2 3 b c a ab c
145
1 2 3 b c a ab c
146
4. Invitation Graph Drawing, Crete, Sept 21 – 24, 2008 Prague MCW, July 28 – Aug 1, 2008
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.