Download presentation
Presentation is loading. Please wait.
Published byJayson White Modified over 8 years ago
1
Definitions Observation unit Target population Sample Sampled population Sampling unit Sampling frame
2
Target Population and Sampling Frame
3
Types of Surveys Cross-sectional surveys a specific population at a given point in time will have one or more of the design components stratification clustering with multistage sampling unequal probabilities of selection Longitudinal surveys a specific population repeatedly over a period of time panel rotating samples
4
Cross Sectional Surveys Sampling Design Terminology
5
Methods of Sample Selection Basic methods simple random sampling systematic sampling unequal probability sampling stratified random sampling cluster sampling two-stage sampling
6
Simple Random Sampling Why? basic building block of sampling sample from a homogeneous group of units How? physically make draws at random of the units under study computer selection methods: R, Stata
7
Systematic Sampling Why? easy can be very efficient depending on the structure of the population How? get a random start in the population sample every k th unit for some chosen number k
8
Additional Note Simplifying assumption: in terms of estimation a systematic sample is often treated as a simple random sample Key assumption: the order of the units is unrelated to the measurements taken on them
9
Unequal Probability Sampling Why? may want to give greater or lesser weight to certain population units two-stage sampling with probability proportional to size at the first stage and equal sample sizes at the second stage provides a self-weighting design (all units have the same chance of inclusion in the sample) How? with replacement without replacement
10
With or Without Replacement? in practice sampling is usually done without replacement the formula for the variance based on without replacement sampling is difficult to use the formula for with replacement sampling at the first stage is often used as an approximation Assumption: the population size is large and the sample size is small – sampling fraction is less than 10%
11
Stratified Random Sampling Why? for administrative convenience to improve efficiency estimates may be required for each stratum How? independent simple random samples are chosen within each stratum
12
Example: Survey of Youth in Custody first U.S. survey of youths confined to long-term, state-operated institutions complemented existing Children in Custody censuses. companion survey to the Surveys of State Prisons the data contain information on criminal histories, family situations, drug and alcohol use, and peer group activities survey carried out in 1989 using stratified systematic sampling
13
SYC Design strata type (a) groups of smaller institutions type (b) individual larger institutions sampling units strata type (a) first stage – institution by probability proportional to size of the institution second stage – individual youths in custody strata type (b) individual youths in custody individuals chosen by systematic random sampling
14
Cluster Sampling Why? convenience and cost the frame or list of population units may be defined only for the clusters and not the units How? take a simple random sample of clusters and measure all units in the cluster
15
Two-Stage Sampling Why? cost and convenience lack of a complete frame How? take either a simple random sample or an unequal probability sample of primary units and then within a primary take a simple random sample of secondary units
16
Synthesis to a Complex Design Stratified two-stage cluster sampling Strata geographical areas First stage units smaller areas within the larger areas Second stage units households Clusters all individuals in the household
17
Why a Complex Design? better cover of the entire region of interest (stratification) efficient for interviewing: less travel, less costly Problem: estimation and analysis are more complex
18
Ontario Health Survey carried out in 1990 health status of the population was measured data were collected relating to the risk factors associated with major causes of morbidity and mortality in Ontario survey of 61,239 persons was carried out in a stratified two-stage cluster sample by Statistics Canada
19
OHS Sample Selection strata: public health units – divided into rural and urban strata first stage: enumeration areas defined by the 1986 Census of Canada and selected by pps second stage: dwellings selected by SRS cluster: all persons in the dwelling
20
Longitudinal Surveys Sampling Design
21
Schematic Representation
23
Survey Weights
24
Survey Weights: Definitions initial weight equal to the inverse of the inclusion probability of the unit final weight initial weight adjusted for nonresponse, poststratification and/or benchmarking interpreted as the number of units in the population that the sample unit represents
25
Interpretation the survey weight for a particular sample unit is the number of units in the population that the unit represents
26
Effect of the Weights Example: age distribution, Survey of Youth in Custody
27
Unweighted Histogram
28
Weighted Histogram
29
Weighted versus Unweighted
30
Observations the histograms are similar but significantly different the design probably utilized approximate proportional allocation the distribution of ages in the unweighted case tends to be shifted to the right when compared to the weighted case older ages are over-represented in the dataset
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.