Presentation is loading. Please wait.

Presentation is loading. Please wait.

Wolfram KORTEN 1 Euroschool Leuven – Septemberi 2009 Coulomb excitation with radioactive ion beams Motivation and introductionMotivation and introduction.

Similar presentations


Presentation on theme: "Wolfram KORTEN 1 Euroschool Leuven – Septemberi 2009 Coulomb excitation with radioactive ion beams Motivation and introductionMotivation and introduction."— Presentation transcript:

1 Wolfram KORTEN 1 Euroschool Leuven – Septemberi 2009 Coulomb excitation with radioactive ion beams Motivation and introductionMotivation and introduction Theoretical aspects of Coulomb excitation Experimental considerations, set-ups and analysis techniquesExperimental considerations, set-ups and analysis techniques Recent highlights and future perspectivesRecent highlights and future perspectives Lecture given at the Euroschool 2009 in Leuven Wolfram KORTEN CEA Saclay

2 Wolfram KORTEN 2 Euroschool Leuven – Septemberi 2009 Experiments with Miniball at ISOLDE-Cern

3 Wolfram KORTEN 3 Euroschool Leuven – Septemberi 2009 Coulomb excitation set up at Rex-Isolde Germanium detector array: Miniball 8 triple cluster Ge detectors, each consisting of three 6-fold segmented HPGe detectors Particle detector Double-Sided Si Strip Detector 1 st post-accelerated beam and Coulomb excitation in 2001

4 Wolfram KORTEN 4 Euroschool Leuven – Septemberi 2009 O. Niedermaier et al., PRL94, 172501 (2005) M. Scheidlitz, P. Reiter et al. in preparation Excitation probability normalised to target excitation (Ni, Ag) Extraction of electromagnetic matrix elements Coulomb excitation of 30,32 Mg at Rex-Isolde/CERN  limits of the “island of inversion” (measurement of    Corrections needed for beam contamination, possible 2 nd order exc.

5 Wolfram KORTEN 5 Euroschool Leuven – Septemberi 2009 Limits of the 1 st order perturbation analysis 1 st order perturbation theory requires:  Only excitation of the first 2 + state is relevant  “Virtual” excitations of higher lying states are negligible W. Schwerdtfeger et al., PRL 103, 012501 (2009) 0.9 0.2 0.3 1.4EE

6 Wolfram KORTEN 6 Euroschool Leuven – Septemberi 2009 Comparison with high-energy Coulomb excitation O. Niedermaier et al., PRL94, 172501 (2005) Good agreement between low-energy (“safe”) Coulomb excitation and some of the results obtained from electromagnetic excitation at high energies

7 Wolfram KORTEN 7 Euroschool Leuven – Septemberi 2009 Coulomb Excitation of 20-21 Na, 21 Ne Bambino Θ = 20-50 o Pb shielding 1x10cm collimator plastic scintillator 1 st TIGRESS Experiment, Aug 2006

8 Wolfram KORTEN 8 Euroschool Leuven – Septemberi 2009 Properties of mirror nuclei 21 Na/ 21 Ne with δ(E2/M1; 5/2 + →3/2 + ) = +0.05(2)  B(E2) = 14  12 W.u. with δ(E2/M1; 5/2 + →3/2 + ) = -0.074(1)  B(E2;3/2 +  5/2 + ) = 24  3 W.u.  (5/2 + ) = 1/ tot = [ (M1;5/2 +  3/2 + ) + (E2; 5/2 +  3/2 + )] -1 with I(M1) >> I(E2)

9 Wolfram KORTEN 9 Euroschool Leuven – Septemberi 2009 21 Ne, 21 Na Heavy-ion gated γ-ray spectra Clean γ-ray spectra with negligible influence of 511 keV due to intense beam β + activity For Ti Doppler correction shows both 46 Ti and 48 Ti 2 + decay transitions

10 Wolfram KORTEN 10 Euroschool Leuven – Septemberi 2009 GOSIA analysis and results 21 Ne Present workPrior work [1] B(E2; 5/2 + →3/2 + )80 ± 6 e 2 fm 4 83 ± 10 e 2 fm 4 δ(E2/M1) (5/2 + →3/2 + )- 0.073 ± 0.003- 0.074 ± 0.004 21 Na Present workPrior work [1] B(E2; 5/2 + →3/2 + )124 ± 9 e 2 fm 4 48 ± 41 e 2 fm 4 δ(E2/M1) (5/2 + →3/2 + )+ 0.084 ± 0.003+ 0.05 ± 0.02 [1] R.B. Firestone, NDS 103 (2004) 269 with NNDC 10/10/2006 erratum “Wrong” M1/E2 mixing  Stronger E2 component than previously reported Comprehensive Error analysis includes uncertainties in beam energy, target thickness, detector geometry (Clovers), unknown matrix elements and their signs, etc. M.A. Schumacher et al., PRC78 (2008) 044321 γ ray yields of 5/2 +  3/2 + transition were measured in coincidence with θ and φ gates on the recoiling ions. Matrix elements were fit to the measured yields using the GOSIA search code assuming the following level scheme. Known lifetimes and branching ratios as input parameters

11 Wolfram KORTEN 11 Euroschool Leuven – Septemberi 2009 1 st TIGRESS experiment at ISAC-II: Aug 2007 Electronics shack Lead shielding wall Six tigress modules mounted on one half of the mechanical support structure BAMBINO CD-S3 θ = 20-50 deg. Beam dump on rails Faraday cup YAP:Ce Scintillator Channeltron detector

12 Wolfram KORTEN 12 Euroschool Leuven – Septemberi 2009 Coulomb Excitation Coulex of 29 Na: Probing the Transition to the Island of Inversion 29 Na beam ~ 400 ions/s, 110 Pd target 2.94 mg/cm 2 TIGRESS-Bambino Coincidences: ~ 0.001 Hz Room background in TIGRESS: ~ 1.2 kHz 72 keV 29 Na 374 keV 110 Pd A Hurst et al Phys Lett B674(2009) 168 B(E2) = 0.237(21) eb Consistent with MCSM prediction of Otsuka large B(E2) requires narrowing sd-pf (N=20) shell gap

13 Wolfram KORTEN 13 Euroschool Leuven – Septemberi 2009 Shape coexistence in N=28 isotones R. Rodríguez-Guzmán, PRC 65, 024304 Ca 40 96.94 Ca 42 0.65 Ca 44 2.08 Ca 46 0.003 Ca 48 0.19 Ar 38 0.07 Ca 50 13.9 s Ar 40 99.59 Ar 42 32.9 y Ar 44 11.9 m Ar 46 8.4 s Ar 48 0.48 s S 36 0.015 S 38 170 m S 40 8.8 s S 42 1.01 s S 44 123 ms S 46 50 ms Si 34 2.77 s Si 36 0.45 s Si 38 >1  s Si 40 33 ms Si 42 13 ms Si 44 10 ms Mg 32 86 ms Mg 34 20 ms Mg 36 3.9 ms Mg 38 >260 ns Mg 40 1 ms M. Girod Bruyères-le-Châtel 202224262830 20 18 16 14 12 Rapid onset of deformation in N~28 nuclei below Ca ? All N=28 isotones predicted to show shape coexistence Precision measurement of e.m. matrix elements in 44 Ar

14 Wolfram KORTEN 14 Euroschool Leuven – Septemberi 2009 Coulomb excitation set-up for RIBs (ex. SPIRAL) Double-sided Si detector 48 rings  16 sectors 16 large Ge Clover detectors 4  4 segmented photopeak efficiency  = 20%

15 Wolfram KORTEN 15 Euroschool Leuven – Septemberi 2009 B. Fornal et al., EPJA 7, 147 (2000) 1.158 2.746 3.439 0+0+ 2+2+ (4 + ) (6 + ) deep inelastic 2+2+ 1.158 2.011 2.748 2.977 0+0+ (2 + ) J. Mrazek et al., Nucl. Phys. A 734, E65 (2004) beta decay SPIRAL beam 44 Ar 3·10 5 pps 2.8·A MeV (Ag) 3.8·A MeV (Pb) EXOGAM 109 Ag DSSD 208 Pb 44 Ar + 109 Ag  cm =[35°, 72°] 2+0+2+0+ 1 1 44 Ar 109 Ag 44 Ar + 208 Pb  cm =[67°, 130°] (2 + )  2 + 2 1 (0 + )  2 + 2 2 2+0+2+0+ 1 1 2 1 (2 + )  0 + 2 1 Coulomb excitation of 44 Ar at SPIRAL / GANIL

16 Wolfram KORTEN 16 Euroschool Leuven – Septemberi 2009 Determination of quadrupole moments b projectile target The excitation cross section is a direct measure of the E matrix elements. IfIf 1 st order: IiIi 2 nd order: IiIi IfIf ImIm reorientation effect: IfIf IiIi MfMf Sensitivity to Q 2 by varying Z,   (a,v  )

17 Wolfram KORTEN 17 Euroschool Leuven – Septemberi 2009 Determination of quadrupole moments  differential measurement of Coulomb excitation cross section  extract both transitional and diagonal matrix elements  B(E2) and spectroscopic quadrupole moment Q s  integral measurement is not sensitive to Q s   lifetime measurement  extract B(E2) independent of Q s b projectile target The excitation cross section is a direct measure of the E matrix elements. IfIf 1 st order: IiIi 2 nd order: IiIi IfIf ImIm reorientation effect: IfIf IiIi MfMf

18 Wolfram KORTEN 18 Euroschool Leuven – Septemberi 2009 Coulomb excitation of 44 Ar at SPIRAL / GANIL 2 + 1.158 2 + 2.011 76(10) 4.6(8) 0+0+ experiment B(E2;  ) in e 2 fm 4 (4 + ) 2.746 Q s =  8(3) e fm 2 0+0+ 75 780 2 + 1.758 2 + 3.597 theory HFB+GCM(GOA) 1.4 180 4.067 Q s =+7 e fm 2 Q s =  7.3 e fm 2 Q s =  14 e fm 2 4+4+  good agreement for B(E2) and Q  energy spectrum too spread out 680 +150 -90 Ag target, 35°  cm  70° Ag target, 70°  cm  130°Pb target, 30°  cm  130°

19 Wolfram KORTEN 19 Euroschool Leuven – Septemberi 2009 Shape coexistence around A=70 74 Kr expected e.g. in: 74 Kr 38 36 68 Se 34 34 70 Se 36 34 72 Kr 36 36 oblateprolate 0+0+ 0+0+ 2+2+ 2+2+ 4+4+ 4+4+ 6+6+ 6+6+ 8+8+ Possible 0 + shape isomers and configuration mixing

20 20  70 Se on 104 Pd at 2.94 MeV/u  integral measurement  excitation probability P(2 + ) via normalization to known 104 Pd A.M. Hurst et al., PRL 98, 072501 (2007) (Univ. Liverpool) P 2+ depends on  transitional matrix element B(E2)  diagonal matrix element Q 0  one measurement, but two unknowns ! 2+2+ 0+0+  (2 + ) = 1.5(3) ps J. Heese et al., Z. Phys. A 325, 45 (1986) Coulomb excitation probability (1  ) 68 Se intermediate-energy Coulex GANIL E. Clément et al., NIM A 587, 292 (2008) ? Coulomb excitation of 70 Se at CERN / ISOLDE

21 Wolfram KORTEN 21 Euroschool Leuven – Septemberi 2009 Recoil-Distance Doppler Shift Method gamma rays emitted target and stopper foil at distance d  in flight  Doppler-shifted peak lifetime extracted from intensities as a function of distance d  at rest  narrow peak at E 0

22 22 Lifetimes in 70 Se revisited GASP and Köln Plunger at Legnaro 40 Ca( 36 Ar,  2p) 70 Se stopped shifted beam Recoil-distance Doppler shift 70 Se 2 +  0 +  literature value:  = 1.5(3) ps J. Heese et al., Z. Phys. A 325, 45 (1986)  new lifetime for 2 + in 70 Se:  = 3.2(2) ps J. Ljungvall et al., Phys. Rev. Lett. 100, 102502 (2008) Heese et al. Ljungvall et al.

23 Wolfram KORTEN 23 Euroschool Leuven – Septemberi 2009 Coulomb excitation of 74,76 Kr at SPIRAL SPIRAL beams 76 Kr 5  10 5 pps 74 Kr 10 4 pps 4.5 MeV/u EXOGAM Pb Acta Phys. Pol. B 36, 1281 (2005)

24 Wolfram KORTEN 24 Euroschool Leuven – Septemberi 2009 Shape coexistence in 74 Kr [24°, 55°][55°, 74°][67°, 97°][97°, 145°] 74 Kr 0+0+ 8+8+ 6+6+ 4+4+ 2+2+ 0+0+ 2+2+ 4+4+ 0+0+ 2+2+    E. Clément et al., Phys. Rev. C 75, 054313 (2007)  74 Kr + 208 Pb at 4.7 MeV/u (SPIRAL)  multi-step Coulomb excitation   -ray yields as function of scattering angle (differential excitation cross section)  experimental spectroscopic data (lifetimes, branching ratios)  least squares fit of ~ 30 matrix elements (transitional and diagonal)

25 Wolfram KORTEN 25 Euroschool Leuven – Septemberi 2009 Life time results in 74,76 Kr Fusion-evaporation reactions :  40 Ca( 40 Ca,a2p) 74 Kr  40 Ca( 40 Ca,4p) 76 Kr 74 Kr Differential decay curve method: J. Roth et al., J.Phys.G, L25 (1984) 23.5(1.9) ps13.2 (7) ps B. Wörmann et al., NPA 431, 170 (1984) 35.3 (1.0) ps4.8 (5) ps 2+4+ 74 Kr34.5 (6) ps4.9 (3) ps 76 Kr41.4 (6) ps3.7 (2) ps

26 Wolfram KORTEN 26 Euroschool Leuven – Septemberi 2009 Sensitivity to quadrupole moments 74 Kr  prolate shape full  2 minimization: negative matrix element (positive quadrupole moment Q 0 )  oblate shape positive matrix element (negative quadrupole moment Q 0 ) 74 Kr

27 Wolfram KORTEN 27 Euroschool Leuven – Septemberi 2009 Quadrupole moments (Q 0 ) in 74 Kr and 76 Kr 74 Kr 76 Kr 0+0+ 1 2+2+ 1 4+4+ 1 6+6+ 1 0+0+ 2 2+2+ 2 (4 + ) 2 0+0+ 1 2+2+ 1 4+4+ 1 6+6+ 1 0+0+ 2 2+2+ 3  direct confirmation of the prolate – oblate shape coexistence  first reorientation measurement with radioactive beam + 1.85 eb +0.85 -0.79 + 2.11 eb +1.22 -0.42 + 3.13 eb +0.80 -1.25  0.86 eb +0.73 -0.60 + 2.50 eb +0.80 -0.80 + 4.66 eb +0.80 -0.80 + 5.07 eb +0.70 -0.70  3.40 eb +1.30 -1.30

28 Wolfram KORTEN 28 Euroschool Leuven – Septemberi 2009 Full results of Gosia analysis  14 transitional E2 matrix elements  18 transitional E2 matrix elements  4 diagonal E2 matrix elements  5 diagonal E2 matrix elements

29 Wolfram KORTEN 29 Euroschool Leuven – Septemberi 2009 prolate oblate Q s <0 prolate Q s >0 oblate experimental B(E2;  ) [e 2 fm 4 ] Experimental results and comparison with theory  vibration Calculation HFB-Gogny 5-dim GCM  complete set of e.m. matrix elements, incl. static moments  quantitative understanding of shape coexistence and configuration mixing  triaxiality is the key to reproduce experimental data and shape evolution E. Clément et al., Phys. Rev. C 75, 054313 (2007)

30 Wolfram KORTEN 30 Euroschool Leuven – Septemberi 2009 Coulomb excitation of 74-80 Zn at Rex-Isolde J. Van de Walle et al., PRL 99, 142501 (2007) and PRC 79, 014309 (2009) 80 Zn on 108 Pd (2.87 MeV/u, 2.0 mg/cm 2, 3000 pps) Beam contaminants  increase for more exotic beams  must be taken into account when calculating the target excitation Pd Zn

31 Wolfram KORTEN 31 Euroschool Leuven – Septemberi 2009 Coulomb excitation of 74-80 Zn at Rex-Isolde two unknowns:  B(E2)  Q s Integral measurement  one observable: total excitation probability 20 ps 28.5 ps 25 ps 74 Zn IfIf IiIi MfMf Life time measurements would reduce B(E2) errors and determine Q 0 possible by using RDDS technique after multi-nucleon transfer reactions

32 32 Lifetime measurement using multi-nucleon transfer PRISMA / CLARA @ Legnaro Pilot experiment 48 Ca + 208 Pb, 6.5 MeV/u J.J. Valiente-Dobón et al. (Legnaro) targets with degraders at fixed distances compact plunger for multi-nucleon transfer reactions to be used at PRISMA (LNL) and VAMOS (GANIL) First GANIL experiment (VAMOS + EXOGAM) 238 U + 64 Ni, 6.5 MeV/u (inverse kinematics) lifetime measurement in neutron-rich nuclei below 68 Ni (22.-30.09.2008)

33 Wolfram KORTEN 33 Euroschool Leuven – Septemberi 2009  Opportunity to study a new doubly magic nucleus  Study collectivity of N=82, Z=50 core excitation  High E(2 + ) ~ 4MeV + small B(E2) + weak beam (10 4 pps)  very low event rate -Employ high efficiency BaF 2  -array ~ 40% full-energy at 4 MeV -Use high-Z target ( 48 Ti) -Run at higher (“unsafe”) energies (495 MeV and 470 MeV) -Limit distance of closest approach by looking only at forward angles in center of mass Coulomb Excitation of 132 Sn at HRIBF

34 Wolfram KORTEN 34 Euroschool Leuven – Septemberi 2009 BaF 2 array (150 crystals) for gamma-rays Beam courtesy of D. Radford Setup for 132,134 Sn Coulomb Excitation

35 Wolfram KORTEN 35 Euroschool Leuven – Septemberi 2009 Beam “CD”-type Si detector for scattered Sn and Ti 7 cm diameter 48 radial strips 16 sectors  LAB ~ 7° – 25°  CM ~ 30° - 160° Setup for 132,134 Sn Coulomb Excitation courtesy of D. Radford

36 Wolfram KORTEN 36 Euroschool Leuven – Septemberi 2009 132 Sn beam, doubly stripped - 96% pure - 1.3 x 10 5 ions/s - 3.75 & 3.56 MeV/u 48 Ti target High  efficiency (~ 40%) Two-week experiment Fast  –ion coincidences to suppress background First results on 132 Sn

37 Wolfram KORTEN 37 Euroschool Leuven – Septemberi 2009 132 Sn beam, doubly stripped - 96% pure - 1.3 x 10 5 ions/s - 3.75 & 3.56 MeV/u 48 Ti target High  efficiency (~ 40%) Two-week experiment Fast  –ion coincidences to suppress background Sample gamma-ray spectrum:  ~30% of data  Crystal gain matching & background suppression not yet optimum 48 Ti 2 +  0 + 983 keV; 1.2 barns 132 Sn 2 +  0 + 4041 keV 470 MeV  cm < 110° First results on 132 Sn

38 Wolfram KORTEN 38 Euroschool Leuven – Septemberi 2009 132 Sn beam, doubly stripped - 96% pure - 1.3 x 10 5 ions/s - 3.75 & 3.56 MeV/u 48 Ti target High  efficiency (~ 40%) Two-week experiment Fast  –ion coincidences to suppress background B(E2; 0 +  2 + ) ~ 0.11(3) e 2 b 2 First results on 132 Sn Sample gamma-ray spectrum:  ~30% of data  Crystal gain matching & background suppression not yet optimum 48 Ti 2 +  0 + 983 keV; 1.2 barns 132 Sn 2 +  0 + 4041 keV 470 MeV  cm < 110° R. Varner et al., EPJ. A 25, s01, 391 (2005)

39 Wolfram KORTEN 39 Euroschool Leuven – Septemberi 2009  132 Sn: B(E2) ~ 0.11(3) e 2 b 2 14% Isoscalar E2 EWSR  134 Sn: B(E2) = 0.029(5) e 2 b 2 Coulomb Excitation Results for Sn isotopes B(E2; 0 +  2 + ) (e 2 b 2 ) A (Sn Isotopes) E(2 + ) (keV) New facilities needed in order to fully explore this mass region

40 Wolfram KORTEN 40 Euroschool Leuven – Septemberi 2009 29 Na, 30,31,32 Mg Z=28 Z=50N=40 Z=82 20 N=50 N=82 Drip lines and shell Structure in light nuclei Drip-line nuclei: 10 Be Mirror nuclei : 20,21 Na, 21 Ne The “island of inversion” : 29 Na, 30,31,32 Mg Coulomb excitation studies with low-energy RIBs 10 Be 20,21 Na, 21 Ne

41 Wolfram KORTEN 41 Euroschool Leuven – Septemberi 2009 67,69,71,73 Cu, 68 Cu, 70(m) Cu 68 Ni 74,76,78,80 Zn, 82 Ge 106,108,110 Sn 122,124 Cd, 126-134 Sn 132-136 Te, 138,140 Xe 140,148,150 Ba Z=28 Z=50N=40 Z=82 20 N=50 N=82 Evolution of Shell Structure far from stability 44 Ar (N=28) 68-78 Ni (Z=28, N=40-50) : 68 Ni, 67,69,71,73 Ci, 68,70(m) Cu, 74,76,78,80 Zn, 61 Mn, 61 Fe 100 Sn : 106,108,110 Sn, 100,102,104 Cd 132 Sn : (Z=50, N=82) 122-126 Cd, 126-134 Sn, 132-136 Te, 140 Ba Coulomb excitation studies with low-energy RIBs

42 Wolfram KORTEN 42 Euroschool Leuven – Septemberi 2009 Evolution of nuclear shapes and shape coexistence N=Z  34: 70 Se, 74,76 Kr, N  60: 88-94 Kr, 96 Sr N  104: 182,184,186,188 Hg, 202,204 Rn 74,76 Kr 70 Se Z=28 Z=50N=40 Z=82 20 N=50 N=82 96 Sr, 88-94 Kr 182,184,186,188 Hg 202,204 Rn Coulomb excitation studies with low-energy RIBs

43 Wolfram KORTEN 43 Euroschool Leuven – Septemberi 2009 Perspectives 363840424446485052545658606264666870 Ni 28 Cu 29 Zn 30 Ga 31 Ge 32 As 33 Se 34 Br 35 Kr 36 Rb 37 Sr 38 Y 39 Zr 40 Nb 41 Mo42 Tc 43 Ru 44 Rh 45 75 Pd 46 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 Gd 64 Tb 65 Dy 66 Ho 67 62646668707274767880828486 8890 92 9496 98 100 102 64 65 70 71 76 82 81 86 87 88 89 96 93 100 99 104 103 110 109 116 115 124 123 130 127 136 133 138 139 142 141 150 154 153 90 98 100 145 146 Quadrupole deformation zone Spherical robust gaps 160 159 164 165 Octupole deformation gaps Spherical fragile gaps Deformed gaps 132 78 courtesy D. Verney (IPNO)

44 Wolfram KORTEN 44 Euroschool Leuven – Septemberi 2009 M. Girod CEA Bruyères-le-Châtel Shapes in neutron-rich A=100 nuclei 96 Sr 98 Sr 100 Sr 102 Sr 104 Sr 94 Sr 92 Sr 100 Zr 102 Zr 104 Zr 106 Zr 98 Zr 96 Zr 94 Zr 94 Kr 96 Kr 100 Kr 102 Kr 98 Kr 92 Kr 90 Kr 92 Se 94 Se 96 Se 98 Se 90 Se 96 Mo 98 Mo 100 Mo 102 Mo 104 Mo 106 Mo 108 Mo 100 Ru 102 Ru 104 Ru 106 Ru 108 Ru 58606462665654 34 36 38 40 42 44 96 Kr 98 Sr 100 Zr J. Skalski et al., NPA 617, 282 (1997)

45 Wolfram KORTEN 45 Euroschool Leuven – Septemberi 2009 Coulomb excitation measurement towards 100 Sn 106-108 Sn+ Ni @ 2.8 MeV/u A. Ekstrom et al., PRL101 (012502) 2008


Download ppt "Wolfram KORTEN 1 Euroschool Leuven – Septemberi 2009 Coulomb excitation with radioactive ion beams Motivation and introductionMotivation and introduction."

Similar presentations


Ads by Google