Download presentation
Presentation is loading. Please wait.
Published byPauline Allison Modified over 9 years ago
1
BELLA and laser-driven e-/e+ collider concept C.G.R. Geddes, E. Cormier-Michel, E. Esarey, C.B. Schroeder, C. Toth, W.P. Leemans LOASIS program, LBNL, http://loasis.lbl.gov Jean-Luc Vay, LBNL D.L. Bruhwiler, J.R. Cary, B.M. Cowan, C. Nieter, K. Paul Tech-X COMPASS meeting, 2009 1 1 *cgrgeddes@lbl.gov NA-22/Nonproliferation R&D
2
LOASIS team Staff E. Esarey (T) C. Geddes (S+E) A. Gonsalves (E) W.Leemans(E) N. Matlis (E) C. Schroeder (T) C. Toth (E) J. Van Tilborg (E) Eng/Techs D. Syversrud N. Ybarraza K. Sihler Admin O. Wong M. Condon (0.5) G. Rogers (0.1) Postdocs E. Cormier-Michel (S) J. Osterhoff (E) Students M. Bakeman (PhD) B. Kessler D. Kim C. Lin (PhD) G. Plateau (PhD) S. Shiraishi (PhD) T. Le Corre (M) H. Vincente Collaborators include: LBNL : K. Barat, M. Battaglia, W. Byrne, J. Byrd, R. Duarte, W. Fawley. K. Robinson, D. Rodgers, R. Donahue et al. Tech-X: J. Cary, D. Bruhwiler, et al. SciDAC team Oxford: S. Hooker et al. MPQ: F. Krausz, F. Gruener et al. LOA: O. Albert, L. Canova GSI: T. Stoehlker, D. Thorn
3
DOE Scientific Discovery through Advanced Computing: UCLA:W.B. Mori, F.S. Tsung, C. Huang, M. Tzoufras, M. Zhou, W. Lu, S. Martins, M. Tzoufras, V. Dycek + collaborators at IST USC/Duke:T. Katsouleas, X. Wang Simulation Collaboration LOASIS: C.G.R. Geddes, E. Michel E. Esarey, C.B. Schroeder, W.P. Leemans Tech-X:D. Bruhwiler, B. Cowan, P. Messmer, P. Mullowney, K.Paul, V. Ranjbar Tech - X & U. Colorado J. Cary OxfordW. Andreas, S. Bajlekov, N. Bourgeois, T. Ibbotson, S.M. Hooker NERSC, visualization:W. Bethel, J. Jacobsen, Prabhat, O. Rubel, D. Ushizima, G. Weber LBNL AMAC, CBP: R. Ryne, J.L. Vay (LDRD), W. Fawley (LDRD) Nebraska, B.A. Shadwick et al.;
4
Simulating modules for BELLA PW laser and towards a conceptual future LPLC Simulation & Theory must address Collider requirements & design Required suite of models 10 GeV meter-scale stages Parameters for efficient stages Wake load & shaping (Cormier- Michel) Low emittance injector – (Cormier-Michel) Low noise fluid simulations (Bruhwiler) Guiding experiments (Bruhwiler) Full scale stages & evolution Envelope (Cowan), Lorentz (Vay, Mori) Collider concept Leemans & Esarey, Phys. Today 2009 ~10 GeV stages p ~100µm at 10 17 /cc Laser Trapped particles
5
Conceptual design of an LPLC Linac length set by tradeoff of gradient vs. staging Required luminosity L[10 34 cm -2 s -2 ] ~ (E cm [TeV]) 2 because (cross section ~ -2 ) Beam power: P b = fNE cm AC wall-plug power: ~ 200 MW 2% efficiency ~10% laser to beam ~20% wall-plug to laser Additional options include gamma-gamma collider** N ~ 3x10 9 f ~ 15 kHz E cm ~ 1 TeV P b ~ 4 MW 5TeV LPA length vs stage density LPLC Concept at 10 17 /cc *Collider Details – Schroeder et al, AAC 2008; Leemans & Esarey Phys. Today 2009 **Schroeder et al, PAC 2009 10 GeV stage
6
Calculated synchrotron radiation and scattering emittance contributions tolerable Michel, Schroeder, Esarey, Leemans, Phys. Rev. E (2006) Betatron motion in high transverse fields (O[E 0 ]) synchrotron radiation F x ~ 1 GV/m (for n e =10 17 cm -3, r ~ μm) Energy spread induced < 10 -4 for collider params betatron motion synchrotron radiation Beam – beam interaction (beamstrahlung) favors short (micron) bunches e-e- ion Coulomb collisions flat beam ε x = 10 -6 2 TeV f= 10 kHz N=10 9 n=10 17 cm -3 Scattering between beam and background plasma ions: Coulomb scattering emittance growth <nm for collider parameters *Details – Schroeder et al, AAC 2008; Leemans & Esarey Phys. Today 2009
7
Simulation + theory required to model self consistent laser, wake, and bunch Explicit particle in cell simulates required physics – resolves laser period Mhours CPU time for cm-scale GeV simulations (VORPAL*) Meter scale of 10 GeV stages – O[Ghours] explicit scaling + new models scaled simulation – change density, scale parameters envelope & quasistatic – average fast laser osc. see Ben Cowan’s talk Lorentz boosted – moving calculation frame Vay, Mori talks Combination of models for full solution Require improved accuracy for collider emittances Cormier-Michel, Bruhwiler, Vay * Vorpal - Nieter & Cary, JCP 2004. Tajima & Dawson PRL 1979;l Esarey et al. TPS 1996; Leemans et al., IEEE Trans. Plasma Science (1996); Phys. Plasmas (1998) p ~100µm at 10 17 /cc Laser Trapped particles Energy gain ~ n -1 (10 GeV at 10 17 /cc) Length ~ n -3/2 (1m at 10 17 /cc) Gradient ~ n 1/2 (10 GV/m at 10 17 /cc) Laser w 0 &L ~ p (100fs at 10 17 /cc) Depletion ~ Dephasing for a 0 > 1 Energy gain ~ n -1 (10 GeV at 10 17 /cc) Length ~ n -3/2 (1m at 10 17 /cc) Gradient ~ n 1/2 (10 GV/m at 10 17 /cc) Laser w 0 &L ~ p (100fs at 10 17 /cc) Depletion ~ Dephasing for a 0 > 1 Simulations of past expt.’s : Geddes et al JPCS 2008; ScDAC Review 2009
8
10 GeV stages in Quasilinear regime High gradient symmetric e+/e- acceleration 8 e- accel e- focus e+ focus e+ accel a 0 =4 Quasilinear - a 0 ~1-2 e+/e- nearly symmetric high gradient Laser mode controls beam matching to wake Bubble regime wake curvature focuses e- defocuses e+ Linear, nonlinear scalings are of same order e- accel e- focus e+ focus e+ accel a 0 =1 Accel. field Focus field Density
9
Wake scales with density Scaled simulations at a=1 Scaling with density predicts wake structure for 10 GeV 40 J BELLA Stages Use and verify linear theory predictions field ~ 1/ p @ const. a0, k p L laser, k p w 0 Predict 10 GeV performance using short simulations at high density Wake amplitude scales accurately: over 100-fold in density & 2D/3D between explicit, envelope and quasistatic codes Simulation + scaling with theory predict: wake structure wake and laser evolution (details-Cowan,Vay) * Cormier-Michel et al, Proc. AAC 2008 Field ~ 1/ p 10 19 cm -3 = 120 GV/m 10 18 cm -3 = 40 GV/m Wake contours VORPAL slab 10 19 /cc WAKE Quasistatic cylindrical 10 17 /cc 14 kpXkpX 0 -13 kpRkpR 13
10
Spot size ~ p optimizes quasilinear wake excitation and guiding Small spot sizes channel dispersion reduces L dephase energy depleted to transverse field Large spot sizes self focusing pinches focus nonlinear wake results Operate near k p w 0 ~ 5 *Linear scaling: Esarey et al TPS 1996, simulations Geddes PAC 2009 Dephasing, focusing, efficiency versus laser spot size normalized simulations
11
Efficient stage obtained near k p L =1 Resolves laser depletion, broadening 0 0 2 laser spectrum at depletion Intensity (A.U.) Laser, Accelerating field evolution Scan pulse length with fixed laser energy* stay on threshold of self focusing/nonlinearity Characterized 0.5 < k p L < 3 k p L=1 optimal – laser depleted at dephasing Depletion, field scale with density Numerically converged at percent level Does not resolve focusing oscillations – requires envelope (Cowan), Lorentz (Vay) *Geddes PAC 2009 k p L=2 laser energy k p L=2 accelerating field k p L=1 laser & accelerating field deplete at dephasing
12
ne (1/cm^3)2.0e18 a01 lambda_p(um)24 kp*L_laser2 tau (fs)25 w0 (µm)20 kp*w05.3 P(TW)14 P/Pc0.9 40 J 10 GeV 300pC Px [GeV at 10 17 ] k p L=1 stage: 300pC scaled to 10 17 Px [MeV at 10 19 ] 12 Scalable design for HEP, GeV stages Efficient collider stages with 40 J/PW ne (1/cm^3)1.0E+17 a01.4 lambda_p(um)108 kp*L_laser1 tau (fs)57 w0 (µm)90 kp*w05.3 P(TW)563 P/Pc1.8 0.5 J 0.4 GeV 50pC 0120 Quasilinear designs* NOTE : Nonlinear** stages accessible with same laser 40 J laser focused to 41µm 3 (a 0 =2) at n e = 1.3e17 -> 10 GeV, 200pC range of regimes can be explored 012 k p L=1 stage: 300pC scaled to 10 17 ** Lu et al, PRL 96, 0165002 (2006). * Cormier-Michel et al, AAC2008, Geddes et al PAC 2009.
13
BELLA 40 J PW Laser – Components for a Laser Plasma Collider + Radiation Sources BELLA PW laser 40 J / 40 fs 10 GeV stages Injection + Staging Positron acceleration + PWFA expt.’s Energy spread & Emittance preservation Radiation sources Efficient collider module stages are accessible for e+ e- Combination of models is required Wake load & shaping for high efficiency (Cormier- Michel) Low emittance injectors – (Cormier-Michel) Low noise fluid simulations for low emittance structures (Bruhwiler) Full scale stages & evolution- Envelope (Cowan), Lorentz (Vay, Mori)
14
SciDAC plans for BELLA project and a laser – plasma collider Low emittance injector Downramp (Envelope,Explicit) Colliding pulse (Explicit) Model collider emittances Accurate momentum advance, error accumulation (weighting, mesh refinement, high order models) Noise control (fluids, EM dispersion, Cerenkov) Scattering & radiation, bench BD codes 10 GeV m-scale (PW laser)+staging Stage design for efficiency, emittance Scaling & speed- 1000x problem size Reduced models(Envelope,QS,Lorentz) Laser vgroup (EM dispersion) Hydro sim. of capillaries, jets Key model development Explicit PIC, Fluid, hybrid Long stage scaling, EM dispersion, Momentum accuracy Laser Envelope model, Quasistatic Resolve depletion/wavelength shift, Small bunch Optimal Lorentz Frame Diagnostics (simultaneity), Noise control, Backward waves Accurately model experiments – interpret & guide (Bruhwiler, Cormier-Michel)
15
Backup
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.