Download presentation
Presentation is loading. Please wait.
Published byRachel Alexander Modified over 9 years ago
1
LOGO AAIA’2012 \ WCO’2012 09 – 12 september, 2012 S. Deleplanque, A. Quilliot. LIMOS, CNRS, BLAISE PASCAL UNIVERSITY, Clermont-Ferrand (FRANCE) Wrocław, Poland.
2
LOGO www.themegallery.com 2 Introduction The Dial a Ride Problem NP-HARD (with time constraints) Randomized greedy insertion techniques Constraint propagation S. Deleplanque, A. Quilliot Static/Dynamic Wrocław, Poland, 9 - 12 September, 2012
3
LOGO www.themegallery.com 3 Outline Introduction State of the art / model Constraint propagation & insertion techniques Experiments Conclusion Wrocław, Poland, 9 - 12 September, 2012 S. Deleplanque, A. Quilliot
4
LOGO www.themegallery.com 4 The DARP(TW) //20 Angers 11-13 Avril 2012 DARPTW’s input A homogeneous vehicle fleet VH, A common capacity CAP of a vehicle in VH, A transit network G=(V,E) which contains some node Depot, A demand set D : DARPTW’s output VH ’s routes taking in charge D in such a way the performance is the highest possible. S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012
5
LOGO www.themegallery.com 5 The DARP(TW) //20 Angers 11-13 Avril 2012 Time constraints Load constraints S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 “A common capacity CAP of a vehicle in VH ” Easy Hard
6
LOGO www.themegallery.com 6 Performance criterions //20 Angers 11-13 Avril 2012 S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 In the reviews… Travel distance, QoS: Passenger waiting time, Ride time; (Robustness, reliability).
7
LOGO www.themegallery.com 7 Short state of the art – 1/2 //20 Angers 11-13 Avril 2012 Dynamic Programming An exact algorithm for the single vehicle many-to-many dial-a-ride problem with time windows - H. Psaraftis - Transportation Science - 1983 ; Comparison of three algorithms for solving the convergent demand responsive transportation problem – R. Chevrier et al. – ITSC - 2006 ; Column generation Time constrained routing and scheduling - J. Desrosiers et al., - Book – 1995. S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012
8
LOGO www.themegallery.com 8 Short state of the art – 2/2 //20 Angers 11-13 Avril 2012 Genetic algorithm Intractability of the dial-a-ride problem and a multiobjective solution using simulated annealing - J. Baugh et al. - Engineering Optimization - 1998 ; Tabu search A tabu search heuristic algorithm for the static multi- vehicle dial-a-ride problem - J.-F. Cordeau et al., - Transportation Research – 2003 ; Insertion techniques (IT) A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem - J. Jaw et al. - Transportation Research – 1986. S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 Telebus Berlin
9
LOGO www.themegallery.com 9 Insertion Techniques : Motives //20 Angers 11-13 Avril 2012 + CPU time, + programming time, + adaptability, + eases the integration in a dynamic context. S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012
10
LOGO www.themegallery.com 10 A tour Γ : a list //20 Angers 11-13 Avril 2012 S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 e.g. with 2 demands inserted
11
LOGO www.themegallery.com 11 Performance – tour Γ cost //20 Angers 11-13 Avril 2012 Global Duration S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 Riding Time Waiting Time
12
LOGO www.themegallery.com 12 Propagation time constraints Inference rules //20 Angers 11-13 Avril 2012 S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 Rule R1 Rule R2
13
LOGO www.themegallery.com 13 //20 Angers 11-13 Avril 2012 S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 Rule R3 Rule R4 Rule R5 Propagation time constraints Inference rules
14
LOGO www.themegallery.com 14 Propagation time constraints procedure Propagate //20 Angers 11-13 Avril 2012 S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 Procedure Propagate (G: Tour, L: List of nodes, FS: Time windows set related to the node set of G): (Res: Boolean, FR: Time windows set related to node set of G); Not Stop; While L Nil and Not Stop do z <- First(L); L <- Tail(L); For i = 1..5 do Compute all the pairs (x, y) which make possible an application of the rule R i and which are such that x = z or y = z; For any such pair (x, y) do Apply the rule R i ; If NFact is not in L then Insert NFact in L; If Fail then Stop; Propagate <- (Not Stop, FS);
15
LOGO www.themegallery.com 15 //20 Angers 11-13 Avril 2012 S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 Initialize all the sets; // Including Free While J Nil do Pick up some demand i 0 in J; Remove i 0 from J; If FREE(i 0 ) = Nil then Reject ← Reject {i 0 }; Else Derive from FREE(i 0 ) (k 0, x 0, y 0, v 0 ); T(k 0 ) ← INSERT(T(k 0 ), x 0, y 0, i 0 ); // Insertion of oi 0 and di 0 d ← EVAL2(T(k 0 )).d; Insert i 0 into I 1 ; // Compute the new performance For any x in T(k 0 ) do t(x) ← d(x); For any i J do Update Free(i) with the procedure Test-Insert(T(k 0 ), x, y, i) which includes the constraint propagation; Perf ← Perf A, B, C (T, t); INSERTION ← (T, t, Perf, Reject); Procedure Insertion
16
LOGO www.themegallery.com 16 //20 Angers 11-13 Avril 2012 S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 Experiments Instances of : and We compare our results with(AG) (RV)
17
LOGO www.themegallery.com 17 Experiments – Objective function //20 Angers 11-13 Avril 2012 S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 The (AG)‘s objective function uses 5 criterions: (coefficients) Travel distance (8) Excess ride time (3) Passenger waiting (1) Total duration (1) Early arrival (|D|)
18
LOGO www.themegallery.com 18 Experiments //20 Angers 11-13 Avril 2012 S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012
19
LOGO www.themegallery.com 19 Future Works //20 Angers 11-13 Avril 2012 S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 DARP with vehicle 2-preemption DARP with load preemption
20
LOGO www.themegallery.com 20 Future works //20 Angers 11-13 Avril 2012 S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 Rule R6 Rule R7 DARP with vehicle 2-preemption 2 new inference rules R6 and R7:
21
LOGO //20 www.themegallery.com Angers 11-13 Avril 2012 21 And… Dynamic context (robustness), Reliability constraint. S. Deleplanque, A. Quilliot Wrocław, Poland, 9 - 12 September, 2012 Future works
22
LOGO AAIA’2012 \ WCO’2012 09 – 12 september, 2012 Wrocław, Poland. S. Deleplanque, A. Quilliot (speaker)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.