Download presentation
1
Sequencing Technologies
2nd Generation (“NextGen”) Sequencing Technologies “Fantastic” bizarre or exotic; seeming more appropriate to a fairy tale than to reality or practical use
2
Read Length is Not As Important For Resequencing
Jay Shendure
3
Paired End Reads are Important!
Known Distance Read 1 Read 2 Repetitive DNA Unique DNA Paired read maps uniquely Single read maps to multiple positions
5
emulsion PCR emPCR Margulies M et al., (2006) Genome sequencing in microfabricated high-density picolitre reactors Nature 437,
6
Roche 454 Margulies M et al., (2006) Genome sequencing in microfabricated high-density picolitre reactors Nature 437,
7
OH P P P P P P P EE Slawson Tempel, © WUSTL
8
OH P P P P P P P EE Slawson Tempel, © WUSTL
9
OH P P P OH P P P OH P P P OH P P P OH P P P P P P P
EE Slawson Tempel, © WUSTL
10
P P P OH P P P OH P P P P P P P EE Slawson Tempel, © WUSTL
11
P OH P P P P P P P P P P EE Slawson Tempel, © WUSTL
12
P Pyrophosphate OH P P P P P P P P EE Slawson Tempel, © WUSTL
13
P OH P P P P P P P P EE Slawson Tempel, © WUSTL
14
ATP + luciferin P OH P P P P P P P P EE Slawson Tempel, © WUSTL
15
ATP + luciferin P OH P P P P P P P P EE Slawson Tempel, © WUSTL
16
P OH P OH P OH P OH OH P P P P P P P P EE Slawson Tempel, © WUSTL
17
P OH P OH P OH P OH OH P P P P P P P P EE Slawson Tempel, © WUSTL
18
P OH P OH P OH P OH OH P P P P P P P P EE Slawson Tempel, © WUSTL
19
P OH P OH P OH P P OH P P P P P P P P EE Slawson Tempel, © WUSTL
20
P OH P OH P P OH P OH P P P P P P P P EE Slawson Tempel, © WUSTL
21
P OH P OH P P P P OH P P P P P P P P P EE Slawson Tempel, © WUSTL
22
P OH P P P OH P OH P P P P P P P P P EE Slawson Tempel, © WUSTL
23
P OH P P P P OH P P P P P P P P P P EE Slawson Tempel, © WUSTL
24
P P P P OH P P P P P P P P P P EE Slawson Tempel, © WUSTL
25
ATP + luciferin P P P P OH P P P P P P P P P P
EE Slawson Tempel, © WUSTL
26
ATP + luciferin P P P P OH P P P P P P P P P P
EE Slawson Tempel, © WUSTL
27
Brightness of flash is proportional to number of nucleotides added
Flash is too bright 4-mer 3-mer Flash brightness 2-mer 1-mer TCACTTCAAGGGT… EE Slawson Tempel, © WUSTL
28
A T G C ~ 0.5 Gb/run Read length 350-400 bp 200 cycles Roche 454
EE Slawson Tempel, © WUSTL
29
Illumina Nebulizer ~ 400 bp EE Slawson Tempel, © WUSTL
30
EE Slawson Tempel, © WUSTL
31
EE Slawson Tempel, © WUSTL
32
Flow cell 8 channels (“lanes”)
Surface of flow cell coated with a lawn of oligo pairs
33
EE Slawson Tempel, © WUSTL
34
EE Slawson Tempel, © WUSTL
35
EE Slawson Tempel, © WUSTL
36
EE Slawson Tempel, © WUSTL
37
EE Slawson Tempel, © WUSTL
38
EE Slawson Tempel, © WUSTL
39
EE Slawson Tempel, © WUSTL
40
EE Slawson Tempel, © WUSTL
41
EE Slawson Tempel, © WUSTL
42
EE Slawson Tempel, © WUSTL
43
EE Slawson Tempel, © WUSTL
44
EE Slawson Tempel, © WUSTL
45
EE Slawson Tempel, © WUSTL
46
EE Slawson Tempel, © WUSTL
47
EE Slawson Tempel, © WUSTL
48
EE Slawson Tempel, © WUSTL
49
EE Slawson Tempel, © WUSTL
50
Each piece has a unique sequence EE Slawson Tempel, © WUSTL
51
EE Slawson Tempel, © WUSTL
52
EE Slawson Tempel, © WUSTL
53
EE Slawson Tempel, © WUSTL
54
EE Slawson Tempel, © WUSTL
55
EE Slawson Tempel, © WUSTL
56
EE Slawson Tempel, © WUSTL
57
EE Slawson Tempel, © WUSTL
58
EE Slawson Tempel, © WUSTL
59
EE Slawson Tempel, © WUSTL
60
EE Slawson Tempel, © WUSTL
61
EE Slawson Tempel, © WUSTL
62
EE Slawson Tempel, © WUSTL
63
EE Slawson Tempel, © WUSTL
64
EE Slawson Tempel, © WUSTL
65
EE Slawson Tempel, © WUSTL
66
EE Slawson Tempel, © WUSTL
67
EE Slawson Tempel, © WUSTL
68
EE Slawson Tempel, © WUSTL
69
EE Slawson Tempel, © WUSTL
70
EE Slawson Tempel, © WUSTL
71
EE Slawson Tempel, © WUSTL
72
EE Slawson Tempel, © WUSTL
73
EE Slawson Tempel, © WUSTL
74
EE Slawson Tempel, © WUSTL
75
“bridge PCR” EE Slawson Tempel, © WUSTL
76
thousands of strands/cluster
each cluster (“polony”) has a unique sequence EE Slawson Tempel, © WUSTL
77
EE Slawson Tempel, © WUSTL
78
EE Slawson Tempel, © WUSTL
80
EE Slawson Tempel, © WUSTL
81
EE Slawson Tempel, © WUSTL
82
EE Slawson Tempel, © WUSTL
83
EE Slawson Tempel, © WUSTL
84
EE Slawson Tempel, © WUSTL
86
STOP P P P P P P P P P P P P EE Slawson Tempel, © WUSTL
87
Metzger M (2009) Nature Reviews Genetics 11: 31-46
88
STOP P P P STOP P P P STOP P P P STOP P P P EE Slawson Tempel, © WUSTL
89
P P P P OH P P P P P P P P P EE Slawson Tempel, © WUSTL STOP STOP STOP
90
P P P P OH P P P P P P P P P EE Slawson Tempel, © WUSTL STOP STOP STOP
91
P STOP P STOP P P P P P P P P P P EE Slawson Tempel, © WUSTL
92
P STOP P P P P P P P P P P EE Slawson Tempel, © WUSTL
93
STOP P P P P P P P P P P EE Slawson Tempel, © WUSTL
94
STOP P P P P P P P P P P EE Slawson Tempel, © WUSTL
95
STOP OH P P P P P P P P P P EE Slawson Tempel, © WUSTL
96
P P P P P P P P OH P P P P P P P P P P EE Slawson Tempel, © WUSTL STOP
97
P P P P P P P P OH P P P P P P P P P P EE Slawson Tempel, © WUSTL STOP
98
P STOP P STOP STOP P P P P P P P P P P P P EE Slawson Tempel, © WUSTL
99
P STOP P P P P P P P P P P P EE Slawson Tempel, © WUSTL
100
STOP P P P P P P P P P P P EE Slawson Tempel, © WUSTL
101
STOP P P P P P P P P P P P EE Slawson Tempel, © WUSTL
102
STOP OH P P P P P P P P P P P EE Slawson Tempel, © WUSTL
103
G… © Illumina, EEST, © WUSTL
104
GC… © Illumina, EEST, © WUSTL
105
GCT… © Illumina, EEST, © WUSTL
106
GCTG… © Illumina, EEST, © WUSTL
107
GCTGA… © Illumina, EEST, © WUSTL
108
100+ Million Clusters Per Flow Cell 100 Microns
109
Camera time is the limiting step!
Flowcell 8 lanes For picture taking: Each lane is broken up into 100 tiles, each fluor is imaged separately – 2400 pictures taken per cycle EE Slawson Tempel, © WUSTL
110
Chemistry problem 1: terminator is retained
out of phase STOP P P P P P P P P P P EE Slawson Tempel, © WUSTL
111
Chemistry problem 2: fluor is retained
OH P P P P P P P P P P EE Slawson Tempel, © WUSTL
112
Chemistry problem 2: fluor is retained
STOP P P P P P P P P P P EE Slawson Tempel, © WUSTL
113
Chemistry problem 2: fluor is retained
STOP P P P P P P P P P P EE Slawson Tempel, © WUSTL
114
Illumina >100 Gb/run HiSeq ~ 3 – 30 Gb/run GAII Read length
90x106 reads/lane * 102 bp/read = 9x109 bp/lane * 16 lanes/run = 144 Gb/run ~ 3 – 30 Gb/run GAII Read length 30 – 120 bp
115
ABI SOLiD Support Oligonucleotide Ligation Detection emPCR
116
ABI SOLiD Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:
117
ABI SOLiD Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:
118
ABI SOLID Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:
119
ABI SOLiD Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:
120
Mardis ER. (2008) Next-generation DNA sequencing methods
Mardis ER. (2008) Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet. 2008;9:
121
Ion Torrent
122
Nature 475:348 (2011) ~100 bp reads 30 Mb/run
124
Ion Torrent read quality
125
454, 7.4X, 24.5 Gb cost < $1M 3.3 million SNPs
10,654 cause aa substitution (7,648 different from Venter) 222,718 indels (2 to 40kb) 18 CNVs (26 kb to 1.6 Mb) carrier of 10 highly penetrant disease alleles
126
Illumina, 73X, 173 Gb contig N50 = 40 kb scaffold N50 = 1.3 Mb
PMID: Illumina, 73X, 173 Gb contig N50 = 40 kb scaffold N50 = 1.3 Mb
127
ABI SOLiD, 30X coverage 35 interchromosomal translocations
PLoS Genetics 6: e (2010) ABI SOLiD, 30X coverage 107.5 Gb of raw data 55.51 Gb mapped to genome 35 interchromosomal translocations 1,315 structural variations (>100 bp) 191,743 small (<21 bp) indels 2,384,470 SNVs 512 genes homozygously mutated
128
a recessive EMS-induced mutation affecting egg shell morphology
Genetics : 25–32 a recessive EMS-induced mutation affecting egg shell morphology Illumina, 8X coverage 103 SNP differences between mutant and wt 9 non-synonomous 2 nonsense >> one in encore, an obvious candidate
129
Illumina 5.1 Gb of sequence 76 bp reads 40X coverage
30 volume 42 | number 1 | january 2010 Illumina 5.1 Gb of sequence 76 bp reads 40X coverage 4 affected individuals
130
RNA-Seq Pepke S, Wold B & Mortazavi A. (2009) Nature Methods 6:S22
131
ChIP-Seq Lefrançois P et al. (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10:37
133
Plant Physiology, July 2009, Vol. 150, pp. 1541–1555
134
“Fabulous” 3rd Generation (“Next2Gen”) Sequencing Technologies
having no basis in reality; mythical
135
. A T G C . A T G C . A T G C . A T G C
136
Helicos Single-molecule sequencing
137
Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11
138
Metzger M (2009) Nature Reviews Genetics 11: 31-46
139
Helicos 105 to 140 Megabases per hour ~ 35 bp average read length
140
(2009) Volume 27: 847 Helicos, 28X coverage, 84 Gb 2.8M SNPs 752 CNVs
141
Ion Torrent Single-molecule sequencing
142
Single-molecule sequencing - +
Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11
143
Nanopore sequencing - +
Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11
144
Nanopore sequencing Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11
145
Pacific Biosciences Single-molecule sequencing Eid et al 2008
146
detection volume 20 zeptoliters (10-21 liters).
emission excitation ZMW: a hole, tens of nanometers in diameter, fabricated in a 100nm metal film deposited on a silicon dioxide substrate detection volume 20 zeptoliters (10-21 liters). PacBio technology backgrounder:
147
PacBio technology backgrounder: http://www. pacificbiosciences
148
When the DNA polymerase encounters the nucleotide complementary to the next base in the template, it is incorporated into the growing DNA chain. During incorporation, the enzyme holds the nucleotide in the ZMWs detection volume for tens of milliseconds, orders of magnitude longer than the average diffusing nucleotide. The system detects this as a flash of bright light because the background is very low. The polymerase advances to the next base and the process continues to repeat PacBio technology backgrounder:
149
multiple reads of the same molecule
PacBio technology backgrounder:
150
Eid J et al. (2009) Molecules Real-Time DNA Sequencing from Single Polymerase Molecules. Science 323, 133 PMID:
151
Does it work? 150 bp circular template ~93% raw accuracy
15x coverage 99.3% accuracy Eid et al., 2009
152
~ 2-5 bp/sec PacBio claims that, by 2013, the technology will be able to give a ‘raw’ human genome sequence in less than 3 min, and a complete high-quality sequence in 15 min. ( Gupta PK. (2008) Single-molecule DNA sequencing technologies for future genomics research. Trends Biotechnol. 26:602-11
153
F. Sanger, S. Nicklen, and A. R. Coulson, Proc Natl Acad Sci U S A
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.