Download presentation
Presentation is loading. Please wait.
Published byGary Allen Modified over 9 years ago
1
1 Macromolecules copyright cmassengale
2
2 Organic Compounds CompoundsCARBON organicCompounds that contain CARBON are called organic. Macromoleculesorganic moleculesMacromolecules are large organic molecules. copyright cmassengale
3
3 Carbon (C) Carbon4 electronsCarbon has 4 electrons in outer shell. Carboncovalent bonds 4Carbon can form covalent bonds with as many as 4 other atoms (elements). C, H, O or NUsually with C, H, O or N. Example:CH 4 (methane)Example:CH 4 (methane) copyright cmassengale
4
4 Macromolecules Large organic molecules.Large organic molecules. POLYMERSAlso called POLYMERS. MONOMERSMade up of smaller “building blocks” called MONOMERS. Examples:Examples: 1. Carbohydrates 2. Lipids 3. Proteins 4. Nucleic acids (DNA and RNA) copyright cmassengale
5
5 Question: How Are Macromolecules Formed? copyright cmassengale
6
6 Answer: Dehydration Synthesis “condensation reaction”Also called “condensation reaction” polymers monomers“removing water”Forms polymers by combining monomers by “removing water”. HOH HH H2OH2O copyright cmassengale
7
7 Question: How are Macromolecules separated or digested? copyright cmassengale
8
8 Answer: Hydrolysis monomers“adding water”Separates monomers by “adding water” HO HH H H2OH2O copyright cmassengale
9
9 Carbohydrates
10
10 Carbohydrates Small sugar moleculeslarge sugar moleculesSmall sugar molecules to large sugar molecules. Examples:Examples: A.monosaccharide B.disaccharide C.polysaccharide copyright cmassengale
11
11 Carbohydrates Monosaccharide: one sugar unit Examples:glucose ( Examples:glucose (C 6 H 12 O 6 )deoxyriboseriboseFructoseGalactose glucose copyright cmassengale
12
12 Carbohydrates Disaccharide: two sugar unit Examples: –Sucrose (glucose+fructose) –Lactose (glucose+galactose) –Maltose (glucose+glucose) glucoseglucose copyright cmassengale
13
13 Carbohydrates Polysaccharide: many sugar units Examples:starch (bread, potatoes) glycogen (beef muscle) cellulose (lettuce, corn) glucoseglucose glucoseglucose glucoseglucose glucoseglucose cellulose copyright cmassengale
14
14 Lipids copyright cmassengale
15
15Lipids not soluble in waterGeneral term for compounds which are not soluble in water. are soluble in hydrophobic solventsLipids are soluble in hydrophobic solvents. Remember:“stores the most energy”Remember: “stores the most energy” Examples:1. FatsExamples:1. Fats 2. Phospholipids 3. Oils 4. Waxes 5. Steroid hormones 6. Triglycerides copyright cmassengale
16
16 Lipids Six functions of lipids: 1.Long term energy storage 2.Protection against heat loss (insulation) 3.Protection against physical shock 4.Protection against water loss 5.Chemical messengers (hormones) 6.Major component of membranes (phospholipids) copyright cmassengale
17
17 Lipids Triglycerides: c1 glycerol3 fatty acids Triglycerides: composed of 1 glycerol and 3 fatty acids. H H-C----O H glycerol O C-CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 3 = fatty acids O C-CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 3 = O C-CH 2 -CH 2 -CH 2 -CH =CH-CH 2 -CH 2 -CH 2 -CH 2 -CH 3 = copyright cmassengale
18
18 Fatty Acids fatty acids There are two kinds of fatty acids you may see these on food labels: 1.Saturated fatty acids: no double bonds (bad) 2.Unsaturated fatty acids: double bonds (good) O C-CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 3 = saturated O C-CH 2 -CH 2 -CH 2 -CH =CH-CH 2 -CH 2 -CH 2 -CH 2 - CH 3 = unsaturated copyright cmassengale
19
Saturated fatty acid Unsaturated fatty acid
20
Structure of Triglycerides Glycerol + 3 fatty acids 3 ester linkages are formed between a hydroxyl group of the glycerol and a carboxyl group of the fatty acid.
21
Phospholipids Structure: Glycerol + 2 fatty acids + phosphate group. Function: Main structural component of membranes, where they arrange in bilayers.
22
Phospholipids in Water
23
Waxes Function: Lipids that serve as coatings for plant parts and as animal coverings.
24
Steroids Structure: Four carbon rings with no fatty acid tails Functions: Component of animal cell membranes Modified to form sex hormones
25
25 Proteins copyright cmassengale
26
26 Proteins (Polypeptides) peptide bonds polypeptidesAmino acids (20 different kinds of aa) bonded together by peptide bonds (polypeptides). Six functions of proteins:Six functions of proteins: 1.Storage:albumin (egg white) 2.Transport: hemoglobin 3.Regulatory:hormones 4.Movement:muscles 5.Structural:membranes, hair, nails 6.Enzymes:cellular reactions copyright cmassengale
27
27 Proteins (Polypeptides) Four levels of protein structure: A.Primary Structure B.Secondary Structure C.Tertiary Structure D.Quaternary Structure copyright cmassengale
28
Functions of Proteins Enzymes which accelerate specific chemical reactions up to 10 billion times faster than they would spontaneously occur. Structural materials, including keratin (the protein found in hair and nails) and collagen (the protein found in connective tissue).
29
Specific binding, such as antibodies that bind specifically to foreign substances to identify them to the body's immune system. Specific carriers, including membrane transport proteins that move substances across cell membranes, and blood proteins, such as hemoglobin, that carry oxygen, iron, and other substances through the body.
30
Contraction, such as actin and myosin fibers that interact in muscle tissue. Signaling, including hormones such as insulin that regulate sugar levels in blood.
31
Structure of Amino Acid Monomers Consist of an asymmetric carbon covalently bonded to: Hydrogen Amino group Carboxyl (acid) group Variable R group specific to each amino acid
32
Properties of Amino Acids Grouped by polarity Variable R groups (side chains) confer different properties to each amino acid: polar, water soluble. non-polar, water insoluble positively charged negatively charged.
33
33 Primary Structure peptide bonds (straight chains) Amino acids bonded together by peptide bonds (straight chains) aa1aa2aa3aa4aa5aa6 Peptide Bonds Amino Acids (aa) copyright cmassengale
34
34 Secondary Structure primary structurecoilspleats hydrogen bonds3-dimensional folding arrangement of a primary structure into coils and pleats held together by hydrogen bonds. Two examples:Two examples: Alpha Helix Beta Pleated Sheet Hydrogen Bonds copyright cmassengale
35
35 Tertiary Structure Secondary structuresbentfolded more complex 3-D arrangementSecondary structures bent and folded into a more complex 3-D arrangement of linked polypeptides Bonds: H-bonds, ionic, disulfide bridges (S-S)Bonds: H-bonds, ionic, disulfide bridges (S-S) “subunit”.Call a “subunit”. Alpha Helix Beta Pleated Sheet copyright cmassengale
36
36 Quaternary Structure Composed of 2 or more “subunits” Globular in shape Form in Aqueous environments enzymes (hemoglobin)Example: enzymes (hemoglobin) subunits copyright cmassengale
37
Factors That Determine Protein Conformation Occurs during protein synthesis within cell Depends on physical conditions of environment –pH, temperature, salinity, etc. Change in environment may lead to denaturation of protein Denatured protein is biologically inactive Can renature if primary structure is not lost
38
38 Nucleic Acids copyright cmassengale
39
39 Nucleic acids Two types:Two types: a. Deoxyribonucleic acid (DNA- double helix) b. Ribonucleic acid (RNA-single strand) b. Ribonucleic acid (RNA-single strand) Nucleic acids nucleotides dehydration synthesisNucleic acids are composed of long chains of nucleotides linked by dehydration synthesis. copyright cmassengale
41
41 Nucleic acids Nucleotides include:Nucleotides include: phosphate group pentose sugar (5-carbon) nitrogenous bases: adenine (A) thymine (T) DNA only uracil (U) RNA only cytosine (C) guanine (G) copyright cmassengale
42
42 Nucleotide O O=P-O OPhosphate Group Group N Nitrogenous base (A, G, C, or T) (A, G, C, or T) CH2 O C1C1 C4C4 C3C3 C2C2 5 Sugar Sugar(deoxyribose) copyright cmassengale
44
Building the Polymer Phosphate group of one nucleotide forms strong covalent bond with the #3 carbon of the sugar of the other nucleotide.
45
Functions of Nucleotides Monomers for Nucleic Acids Transfer chemical energy from one molecule to another (e.g. ATP)
46
46 DNA - double helix P P P O O O 1 2 3 4 5 5 3 3 5 P P P O O O 1 2 3 4 5 5 3 5 3 G C TA copyright cmassengale
47
DNA: Double helix 2 polynucleotide chains wound into the double helix Base pairing between chains with H bonds A - T C - G
48
Summary of the Organic Molecules:
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.