Download presentation
Presentation is loading. Please wait.
Published bySuzan Hicks Modified over 9 years ago
1
AAE 450 Spring 2008 William Yeong Liang Ling 2/27/2008 Propulsion Analysis of Balloon Rise Time Propulsion
2
AAE 450 Spring 2008 Propulsion Lift Mass Drag Determination of rise time Assumptions Constant sphere Constant C D = 0.2 Barometric formula Kinematic viscosity variation with temperature Constant acceleration over timesteps of 1 second
3
AAE 450 Spring 2008 Propulsion 1 hour 36 minutes to reach 30km. Compares well with high altitude balloon rise times Final velocity of 19.7m/s upwards In reality, balloon will either rupture or oscillate about 30km Determination of rise time Future work Determine maximum drift radius due to wind gusts
4
AAE 450 Spring 2008 Propulsion Thanks to Jerald Balta for modifying the balloon code to output this.
5
AAE 450 Spring 2008 Propulsion Thanks to Jerald Balta for modifying the balloon code to output this.
6
AAE 450 Spring 2008 Propulsion
7
AAE 450 Spring 2008 Propulsion function Output = Balloon_Rise(GLOW) close all %Timestep = 1 second % This is fixed within the code, i.e. dt = 1 Altitude = 0; g = 9.80665; % SUMMARY % This function determines the rise time of the balloon to an altitude of % 30,000m. As a bonus, it also determines the drag, Reynolds Number, % acceleration and velocity experienced by the balloon over the rise time. % x = 0; v = 0; i = 1; t = 0; while x < 30000 Variables = Balloon_Model(GLOW, x); Force = Variables(1); Force = Force - GLOW.*g; Volume = Variables(2); Diameter = Variables(3); [Density_Air Pressure_Air Temperature_Air] = Barometric_Formula(x); Drag = 0.2.*0.5.*Density_Air.*v.^2.*(pi./4).*Diameter^2; if Drag > Force Drag = Force; end
8
AAE 450 Spring 2008 Propulsion Acceleration = (Force - Drag)./GLOW; x = x + v + 0.5.*Acceleration; v = v + Acceleration; Altitude(i) = x; Velocity(i) = v; Acceleration_Grid(i) = Acceleration; Drag_Grid(i) = Drag; t = t + 1; Time(i) = t; % Dynamic Viscosity determined by a best fit curve by Ierardi, James. Dynamic_Viscosity = (-1.1555.*10^-14).*Temperature_Air^3 + (9.5728.*10^-11).*Temperature_Air^2 + (3.7604.*10^-8).*Temperature_Air - (3.4484.*10^-6); Re(i) = (Density_Air.*v.*Diameter)./(Dynamic_Viscosity); i = i + 1; end figure(1) plot(Time,Altitude./1000); title('Change in balloon altitude over time') xlabel('Time (s)') ylabel('Altitude (km)')
9
AAE 450 Spring 2008 Propulsion function [Density_Air Pressure_Air Temperature_Air] = Barometric_Formula(Altitude) % Fixed Constraints g = 9.80665; % Gravitational acceleration, assumed to be constant [m/s^2] Molar_Air = 0.0289644; % Molar mass of Earth's air [kg/mol] R = 8.31432; % Universal gas constant [N·m/(mol·K)] % Density of Air using the Barometric Formula if Altitude < 11000 Density_b = 1.2250; Temperature_b = 288.15; Lapse_b = -0.0065; Height_b = 0; Pressure_b = 101325; elseif Altitude < 20000 Density_b = 0.36391; Temperature_b = 216.65; Lapse_b = 0; Height_b = 11000; Pressure_b = 22632.1; elseif Altitude < 32000 Density_b = 0.08803; Temperature_b = 216.65; Lapse_b = 0.001; Height_b = 20000; Pressure_b = 5474.89; elseif Altitude < 47000 Density_b = 0.01322; Temperature_b = 228.65; Lapse_b = 0.0028; Height_b = 32000; Pressure_b = 868.019;
10
AAE 450 Spring 2008 Propulsion elseif Altitude < 51000 Density_b = 0.00143; Temperature_b = 270.65; Lapse_b = 0; Height_b = 47000; Pressure_b = 110.906; elseif Altitude < 71000 Density_b = 0.00086; Temperature_b = 270.65; Lapse_b = -0.0028; Height_b = 51000; Pressure_b = 66.9389; else Density_b = 0.000064; Temperature_b = 214.65; Lapse_b = -0.002; Height_b = 71000; Pressure_b = 3.95642; end if Lapse_b == 0 Density_Air = Density_b.*exp((-1.*g.*Molar_Air.*(Altitude - Height_b))/(R.*Temperature_b)); %[kg/m^3] else Density_Air = Density_b.*((Temperature_b./(Temperature_b + (Lapse_b.*(Altitude - Height_b))))^(((g.*Molar_Air)./(R.*Lapse_b)) + 1)); %[kg/m^3] end % Pressure of air using barometric formula if Lapse_b == 0 Pressure_Air = Pressure_b.*exp((-1.*g.*Molar_Air.*(Altitude - Height_b))/(R.*Temperature_b)); %[Pa] else Pressure_Air = Pressure_b.*((Temperature_b./(Temperature_b + (Lapse_b.*(Altitude - Height_b))))^(((g.*Molar_Air)./(R.*Lapse_b)))); %[Pa] end % Temperature of air using ideal gas law Temperature_Air = (Molar_Air.*Pressure_Air)./(Density_Air.*R); %[K]
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.