Download presentation
Presentation is loading. Please wait.
Published byEdwin Sullivan Modified over 9 years ago
1
Real-time Dense Visual Odometry for Quadrocopters Christian Kerl 11.05.20121
2
Outline Motivation Hardware & Software Approach Problems Ideas 11.05.20122
3
Motivation Quadrocopters need sensors to fly in unknown environments – Motion – Position – Obstacles Restricted on-board sensors – IMU – Visual navigation (no GPS) Restricted computing resources Autonomous system 11.05.20123
4
Motivation Standard approach to visual odometry: – Sparse feature tracking in intensity / color images – Examples: Jakob, ETH Zurich, TU Graz, MIT – On-board frame rates 10 Hz Our approach: – Using full RGB-D image information – No feature tracking 11.05.20124
5
Hardware – Asctec Pelican 11.05.20125
6
Hardware – Asctec Pelican IMU AutoPilot Board Atom Board 11.05.20126
7
Hardware – Asctec Pelican IMU – 3 axis magnetometer, gyroscope, accelerometer AutoPilot Board – Highlevel + Lowlevel Processor (ARM) Atom Board – Intel Atom Z530 1.6 GHz – 1 GB RAM – 7 Mini-USB Ports – WirelessLAN 600 g payload 11.05.20127
8
Software – Asctec Pelican ROS drivers for Asctec Pelican from ETH Zurich Nonlinear dynamic inversion for position control Luenberger Observer for data fusion Updated version using Extended Kalman Filter to be presented on ICRA 2012 Needs absolute position input from external source Allows to command accelerations, velocities or positions 11.05.20128
9
Hardware – Asus Xtion Pro Live 24 bit RGB image 16 bit depth image 640x480 @ 30 Hz 150 g +On-camera RGB and depth image registration +Time synchronized depth and RGB image -Rolling shutter -Auto exposure 11.05.20129
10
Approach Estimate transformation minimizing squared intensity error (energy minimization) 11.05.201210
11
Approach Linearization with minimize => solve normal equations 11.05.201211
12
Analysis Estimate transformation minimizing squared intensity error (energy minimization) X translation Y translation 11.05.201212
13
Hovering Image Data from Quadrocopter 11.05.201213
14
Trajectory along camera z-axis Image Data from Quadrocopter 11.05.201214
15
Problems Motion blur Auto exposure Dynamic objects (humans) 11.05.201215
16
Problems – Motion Blur 11.05.201216
17
Problems – Motion Blur 11.05.201217
18
Problems – Motion Blur 11.05.201218
19
Problems – Motion Blur 11.05.201219
20
Problems – Motion Blur 11.05.201220
21
Problems – Motion Blur 11.05.201221
22
Problems – Motion Blur 11.05.201222
23
Problems – Auto Exposure 11.05.201223
24
Problems – Auto Exposure 11.05.201224
25
Problems – Dynamic Objects 11.05.201225
26
Ideas Weighted Least Squares Initial motion estimate between 2 consecutive frames from IMU data fusion Multiple iterations per level, convergence checks Regularization term to minimize / constrain least squares solution Minimization of intensity and depth error 11.05.201226
27
Ideas – Weighted Least Squares Assign smaller weight to residual outliers => Weight calculation 11.05.201227
28
Ideas – Weighted Least Squares Influence function – Tukey weight – Huber weight 11.05.201228
29
Ideas – Weighted Least Squares Weighted error 11.05.201229
30
Ideas – Weighted Least Squares Influence on energy function X translation w/o weightsX translation w/ Huber weights 11.05.201230
31
Ideas – Weighted Least Squares Influence on energy function Y translation w/o weightsY translation w/ Huber weights 11.05.201231
32
Ideas – Weighted Least Squares 11.05.201232
33
Ideas – Weighted Least Squares Robustification with respect to dynamic objects Slightly degrades tracking performance How to choose parameter b? 11.05.201233
34
Ideas – Initialization from IMU Use transformation from IMU data fusion as initial estimate 11.05.201234
35
Ideas – Initialization from IMU Use transformation from IMU data fusion as initial estimate 11.05.201235
36
Ideas – Initialization from IMU Use transformation from IMU data fusion as initial estimate 11.05.201236
37
Ideas – Multiple Iterations Perform multiple optimization steps per image pyramid level Stop when increment below threshold Bad frames / diverging results can be recognized and skipped 11.05.201237
38
Summary/Discussion Weighted Least Squares needs more work (especially weight calculation) Initialization from IMU promising Multiple Iterations for increased accuracy and divergence detection promising, but computationally expensive Jumps in trajectory are really problematic! => Ideas welcome! 11.05.201238
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.