Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 8.3 Partial Derivatives Ex. Functions of Several Variables Chapter 8 Lecture 28.

Similar presentations


Presentation on theme: "1 8.3 Partial Derivatives Ex. Functions of Several Variables Chapter 8 Lecture 28."— Presentation transcript:

1 1 8.3 Partial Derivatives Ex. Functions of Several Variables Chapter 8 Lecture 28

2 2 Partial Derivatives

3 3 The partial derivative of f with respect to x is the derivative of f with respect to x, when all other variables are treated as constants. Similarly, the partial derivative of f with respect to y is the derivative of f with respect to y, when all other variables are treated as constants. The partial derivatives are written

4 4 Ex. Partial Derivatives

5 5 Ex. Partial Derivatives

6 6 Geometric Interpretation of Partial Derivatives Plane y = b P z = f (x, y) is the slope of the tangent line at the point P(a,b, f (a,b)) along the slice through y = b. Ex.

7 7 Second-Order Partial Derivatives

8 8 Notation for Partial Derivatives

9 9 Marginal Cost: Linear Model  Suppose you own a company that makes two models of speakers, the Ultra Mini and the Big Stack. Your total monthly cost (in dollars) to make x Ultra Minis and y Big Stacks is given by Example: What is the significance  C/  x and  C/  y? Solution: The cost is increasing at a rate of $20 per additional Ultra Mini (if productions of Big Stacks is held constant). The cost is increasing at a rate of $40 per additional Big Stack (if productions of Ultra Mini is held constant).

10 10 Marginal Cost: Interaction Model  Another possibility for the cost function in the previous example is the interaction model Example: b. What is the marginal cost of manufacturing Big Stacks at a production level of 100 Ultra Minis and 50 Big Stacks per month? Solution: The marginal cost of manufacturing Ultra Minis increases by $0.1 for each Big Stack that is manufactured. a. What are the marginal costs of the two models of speakers?

11 11 The marginal cost of manufacturing Big Stack increases by $0.1 for each Ultra Minis that is manufactured.

12 12 Market Share (Cars and Light Trucks)  Based on data from 1980-1998, the relationship between the domestic market shares of three major U.S. manufacturers of cars and light trucks is Solution: Exercise: (Waner, Problem #43, Section 8.3) where x 1, x 2, and x 3 are, respectively, the fraction of the market held by Chrysler, Ford, and General Motors. Calculate  x 3 /  x 1 and  x 1 /  x 3. What do they signify, and how are they related to each other? General Motors’ market share decreases by 2.2% per 1% increase in Chrysler’s market share if Ford’s share is unchanged.

13 13 Chrysler’s market share decreases by 1% per 2.2% increase in General Motors’ market share if Ford’s share is unchanged. That is, the two partial derivatives are reciprocals of each other.


Download ppt "1 8.3 Partial Derivatives Ex. Functions of Several Variables Chapter 8 Lecture 28."

Similar presentations


Ads by Google