Download presentation
Presentation is loading. Please wait.
Published byGavin Archer Modified over 11 years ago
1
Momentum and Collisions Momentum and Collisions Dr. Robert MacKay Clark College, Physics
2
Introduction Review Newtons laws of motion Define Momentum Define Impulse Conservation of Momentum Collisions Explosions Elastic Collisions
3
Introduction Newtons 3 laws of motion 1. Law of inertia 2. Net Force = mass x acceleration ( F = M A ) 3. Action Reaction
4
Law of interia (1st Law) Every object continues in its state of rest, or of uniform motion in a straight line, unless it is compelled to change that state by forces impressed upon it. acceleration = 0.0 unless the objected is acted on by an unbalanced force
5
Newtons 2nd Law Net Force = Mass x Acceleration F = M A
6
Newtons Law of Action Reaction (3rd Law) You can not touch without being touched For every action force there is and equal and oppositely directed reaction force
7
Newtons Law of Action Reaction (3rd Law) For every action force there is and equal and oppositely directed reaction force Ball 1 Ball 2 F 1,2 F 2,1 F 1,2 = - F 2,1
8
Momentum, p Momentum = mass x velocity is a Vector has units of kg m/s
9
Momentum, p (a vector) Momentum = mass x velocity p = m v p = ? 8.0 kg 6.0 m/s
10
Momentum, p Momentum = mass x velocity p = m v p = 160.0 kg m/s 8.0 kg V= ?
11
Momentum, p Momentum is a Vector p = m v p1 = ? p2 = ? m2= 10.0 kg V= -6.0 m/s m1= 7.5 kg V= +8.0 m/s
12
Momentum, p Momentum is a Vector p = m v p1 = +60 kg m/s p2 = - 60 kg m/s m2= 10.0 kg V= -6.0 m/s m1= 7.5 kg V= +8.0 m/s
13
Momentum, p Momentum is a Vector p = m v p1 = +60 kg m/s p2 = - 60 kg m/s the system momentum is zero., m2= 10.0 kg V= -6.0 m/s m1= 7.5 kg V= +8.0 m/s
14
Newtons 2nd Law Net Force = Mass x Acceleration F = M a F = M (V/t) F t = M V F t = M (V F -V 0 ) F t = M V F - M V 0 F t = p Impulse= Ft The Impulse = the change in momentum
15
Newtons 2nd Law Net Force = Mass x Acceleration F t = p Impulse= F t The Impulse = the change in momentum
16
Newtons Law of Action Reaction (3rd Law) For every action force there is and equal and oppositely directed reaction force Ball 1 Ball 2 F 1,2 F 2,1 F 1,2 = - F 2,1
17
Newtons Law of Action Reaction (3rd Law) Ball 1 Ball 2 F 1,2 F 2,1 F 1,2 = - F 2,1 F 1,2 t = - F 2,1 t p 2 = - p 1
18
Conservation of momentum Ball 1 Ball 2 F 1,2 F 2,1 If there are no external forces acting on a system (i.e. only internal action reaction pairs), then the systems total momentum is conserved.
19
Explosions 2 objects initially at rest A 30 kg boy is standing on a stationary 100 kg raft in the middle of a lake. He then runs and jumps off the raft with a speed of 8.0 m/s. With what speed does the raft recoil? M=100.0 kg after before V=? V=8.0 m/s
20
Explosions 2 objects initially at rest A 30 kg boy is standing on a stationary 100 kg raft in the middle of a lake. He then runs and jumps off the raft with a speed of 8.0 m/s. With what speed does the raft recoil? M=100.0 kg after before V=? V=8.0 m/s p before = p after 0 = 30kg(8.0 m/s) - 100 kg V 100 kg V = 240 kg m/s V = 2.4 m/s
21
Explosions If V red =9.0 m/s V blue =? 9.0 m/s
22
Explosions If V red =9.0 m/s V blue =3.0 m/s 9.0 m/s 3.0 m/s
23
Stick together 2 objects have same speed after colliding A 30 kg boy runs and jumps onto a stationary 100 kg raft with a speed of 8.0 m/s. How fast does he and the raft move immediately after the collision? M=100.0 kg afterbefore V=? V=8.0 m/s
24
Stick together 2 objects have same speed after colliding A 30 kg boy runs and jumps onto a stationary 100 kg raft with a speed of 8.0 m/s. How fast does he and the raft move immediately after the collision? M=100.0 kg afterbefore V=? V=8.0 m/s p before = p after 30kg(8.0 m/s) = 130 kg V 240 kg m/s = 130 kg V V = 1.85 m/s
25
Stick together 2 objects have same speed after colliding This is a perfectly inelastic collision A 30 kg boy runs and jumps onto a stationary 100 kg raft with a speed of 8.0 m/s. How fast does he and the raft move immediately after the collision? M=100.0 kg afterbefore V=? V=8.0 m/s
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.