Download presentation
Presentation is loading. Please wait.
Published byDwight Maxwell Modified over 9 years ago
1
QTL mapping in animals
2
It works
3
QTL mapping in animals It works It’s cheap
4
QTL mapping in animals It works It’s cheap It’s relevant to human studies
5
Genomic resource Nature December 5 2002
6
No more crosses?
7
In silico mapping
8
Method
10
Recombinant Inbreds F 0 Parental Generation F 1 Generation F 2 Generation Interbreeding for approximately 20 generations to produce recombinant inbreds
11
RI strain phenotypes
12
RI strain genotypes
13
QTL for airway responsiveness
15
Power n -2 = (t + t ) 2 /(s2QTL/s2RES) t and t are values on the t distribution corresponding to the desired value s2QTL is the phenotypic variance explained by a QTL s2RES the unexplained variance.
17
Experimentally verified QTL for airway responsiveness Zhang, Y. et al. A genome-wide screen for asthma-associated quantitative trait loci in a mouse model of allergic asthma. Hum. Mol. Genet. 8, 601-605 (1999).
18
Inbred Strain Cross
19
Quantitative Trait Locus Detection
20
Marker QTL M m Q q r
21
M m Q q r MM QQ Qq qq Mm QQ Qq qq mm QQ Qq qq
22
Marker QTL MM QQ Mm QQ P (QQ | MM) = (1-r) 2 P (Qq | MM) = 2r(1-r) P (qq | MM) = r 2 (1-r) 2 + 2r(1-r) + r 2
23
QTL Genotypic values Alleles at the QTL: q and Q Additive value: a Degree of dominance: d QQ = + 2a Qq = + a(1+d) qq =
24
Mean values for marker genotypes
26
Two things follow Contrasts of single marker means can be used to detect QTL
27
QTLeffects.xls Example
30
REAL_DATA/Real data.xls
31
Two things follow Contrasts of single marker means can be used to detect QTL Estimates of position and effect are confounded
32
Additive and dominance estimates
33
Flanking markers M1M1 m1m1 M2M2 m2m2
34
M1M1 m1m1 M2M2 m2m2 M1M1 M2M2 M1M1 M2m2 M1M1 m2m2 M1m1 M2M2 M1m1 M2m2 M1m1 m2m2 m1m1 M2M2 m1m1 M2m2 m1m1 m2m2
35
Interval mapping M1M1 m1m1 M2M2 m2m2 Q q r1r1 r2r2 r 12
36
Interval mapping M1M1 m1m1 M2M2 m2m2 Q q r1r1 r2r2 r 12 r 2 =( r 12 – r 1 )/(1-2r 1 ) No interference r 2 = r 12 - r 1 Complete interference
37
Interval mapping M 1 M 1 M 2 M 2 M1M1 m1m1 M2M2 m2m2 Q q r1r1 r2r2 r 12 p(M 1 QM 2 | M 1 QM 2 ) = ((1-r 1 ) (1-r 2 )/2) 2
38
Interval mapping M1M1 m1m1 M2M2 m2m2 Q q r1r1 r2r2 r 12 p(QQ|M 1 M 1 M 2 M 2 ) = ((1-r 1 ) 2 (1-r 2 ) 2 )/(1-r 12 ) 2 p(Qq|M 1 M 1 M 2 M 2 ) = (2r 1 r 2 (1-r 1 ) (1-r 2 ) )/(1-r 12 ) 2 p(qq|M 1 M 1 M 2 M 2 ) = (r 1 2 r 2 2 )/(1-r 12 ) 2
39
Significance thresholds
40
Permutation tests to establish thresholds Empirical threshold values for quantitative trait mapping GA Churchill and RW Doerge Genetics, 138, 963-971 1994 An empirical method is described, based on the concept of a permutation test, for estimating threshold values that are tailored to the experimental data at hand.
41
Permutation tests Trait values are randomly reassigned to genotypes 10,000 re-samplings for 1% value
42
Permutation tests Robust to departures from normality Robust to missing or erroneous data Easy to implement
43
Significance Thresholds Lander, E. Kruglyak, L. Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results Nature Genetics. 11, 241- 7, 1995
44
Maximum likelihood methods
47
Interval mapping M1M1 M1M1 M2M2 M2M2 Q q r1r1 r2r2 r 12
48
Interval mapping M1M1 M1M1 M2M2 M2M2 Q q r1r1 r2r2 r 12
49
Maximum likelihood Test statistic
50
Example SIMULATED_DATA WinQTL
51
Linear models
52
QQ = + a Qq = + d qq = - a
53
Linear models QQ = + a Qq = + d qq = - a z j = + a. x (M j ) + d. y (M j ) + e j
54
Linear models QQ = + a Qq = + d qq = - a z j = + a. x (M j ) + d. y (M j ) + e j x (Mj) = p(QQ | Mj) – p (qq| Mj) y (Mj) = p(Qq | Mj)
55
Linear models x (Mj) = p(QQ | Mj) – p (qq| Mj) x(M 1 M 1 M 2 M 2 ) (1-r 1 ) 2 (1-r 2 ) 2 -(r 1 2 r 2 2 ) (1-r 12 ) 2 =
56
Linear models x (Mj) = p(QQ | Mj) – p (qq| Mj) x(M 1 M 1 M 2 M 2 ) (1-r 1 ) 2 (1-r 2 ) 2 -(r 1 2 r 2 2 ) (1-r 12 ) 2 = 2r 1 r 2 (1-r 1 ) (1-r 2 ) y(M 1 M 1 M 2 M 2 ) (1-r 12 ) 2 = y (Mj) = p(Qq | Mj)
57
Significance test LR = n ln (SS T /SS E ) = -n ln (1-r 2 ) Degrees of freedom are the number of estimated QTL parameters, plus one for the map position
58
Matrix statement of Haley Knott regression r1 = (X T r1 X r1 ) -1 X T r1 z ith row of matrix X r1 : (1,x(M i,r 1 ), y(M i,r 1 ))
59
Example Regression example.xls
60
Problems of QTL detection Linked QTLs corrupt the position estimates Unlinked QTLs decreases the power of QTL detection
61
Extensions to linear regression Composite interval mapping Multiple interval mapping
62
Composite interval mapping ZB Zeng Precision mapping of quantitative trait loci Genetics, Vol 136, 1457-1468, 1994 http://statgen.ncsu.edu/qtlcart/cartographer.html
63
Composite interval mapping
64
M1M1 M2M2 M1M1 M2M2 QQQ
65
M -1 M1M1 M2M2 M3M3 M1M1 M2M2 M3M3 QQQ
66
Composite interval mapping M -1 M1M1 M2M2 M3M3 M1M1 M2M2 M3M3 QQQ z j = + a. x (M j ) + d. y (M j ) + k=i, i+1 b k. x kj + e j
67
Example SIMULATED_DATA WinQTL
68
Multiple Interval Mapping
71
Example?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.