Download presentation
Presentation is loading. Please wait.
Published byDaniella Park Modified over 9 years ago
1
Tying up loose ends
2
Understand your data
3
No answers available, only data
4
Clustering, SOM, Hebbian learning, PCA…
5
Training includes inputs and correct answers
6
Perceptron, Backprop, POS tagging
7
Probability of Y given X
8
Or the most likely Y given X
9
Probability of Y given X Or the most likely Y given X Collaborative Filtering – people who like X probably like Y
10
Probability of Y given X Or the most likely Y given X Collaborative Filtering – people who like X probably like Y Neural Networks – input X triggers Y output (behaviorism)
11
Input retrieves similarities or correlations as output
12
X is a…
13
X is A or B or C or D
14
X is a… X is A or B or C or D X is 1 or 0
15
X is a… X is A or B or C or D X is face or not-face
16
Goal is prediction
17
Classification is a type of association
18
Goal is prediction Classification is a type of association Includes pattern recognition: OCR, faces, diagnosis, speech, NLP…
19
Goal is prediction Classification is a type of association Includes pattern recognition: OCR, faces, diagnosis, speech, NLP… Includes compression
20
If the output is a continuous number
21
Ex. Automatic steering inputs: sensors (video, GPS, proximity…) output: degree of rotation of the wheel Ex. ALVINN Ex. ALVINN
22
Backprop Neural Nets work for both
23
Different algorithms use different error calculations
24
Simplest : # wrong / # total ie. 2/5 =.4 or 40%
25
Different algorithms use different error calculations Simplest : # wrong / # total ie. 2/5 =.4 or 40% Other examples: WER Mean Squared Error
26
Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output
27
Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Validation Training
28
Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
29
Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Train Test -> Learner 1 error =.01
30
Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Fold 1 Fold 2 Fold 3 Fold 5 Fold 4 Train Test -> Learner 2 error =.012
31
Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Input Output Fold 1 Fold 2 Fold 3 Fold 5 Fold 3 Train Test -> Learner 3 error =.011
32
If errors between folds vary greatly this indicated bias in training
33
Over-fitting – too much training
34
Over-fitting Misrepresentative data
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.