Download presentation
Presentation is loading. Please wait.
Published byMelinda Palmer Modified over 9 years ago
2
Why look for water? Humans exploring the Moon will need water: –Option 1: Carry it there. –Option 2: Use water that may be there already! Carrying water to the Moon will be expensive! Learning to “Live off the land” would make human lunar exploration easier. Humans exploring the Moon will need water: –Option 1: Carry it there. –Option 2: Use water that may be there already! Carrying water to the Moon will be expensive! Learning to “Live off the land” would make human lunar exploration easier.
3
Living off the land Even compared to many meteorites, the Moon is highly depleted in volatile elements and compounds, especially water. However, oxygen does exist within various mineral structures. Hydrogen from the solar wind can also be obtained from the lunar soil. Very energy intensive to obtain these key raw materials (have to heat regolith to at least 700° C). Life would be much easier and cheaper if we could just find H 2 O on the Moon. Even compared to many meteorites, the Moon is highly depleted in volatile elements and compounds, especially water. However, oxygen does exist within various mineral structures. Hydrogen from the solar wind can also be obtained from the lunar soil. Very energy intensive to obtain these key raw materials (have to heat regolith to at least 700° C). Life would be much easier and cheaper if we could just find H 2 O on the Moon.
4
Clementine bistatic radar - 1994 Circular polarization ratio (CPR) consistent with ice crystals in the south polar regolith. Later ground-based studies confirmed high-CPR in some permanently-shadowed craters. However, Arecibo scans have also found high-CPR in some areas that are illuminated, probably due to surface roughness. Are we seeing ice or rough terrain in dark polar craters? Circular polarization ratio (CPR) consistent with ice crystals in the south polar regolith. Later ground-based studies confirmed high-CPR in some permanently-shadowed craters. However, Arecibo scans have also found high-CPR in some areas that are illuminated, probably due to surface roughness. Are we seeing ice or rough terrain in dark polar craters?
5
Lunar Prospector neutron spectrometer maps of the lunar poles. These low resolution data indicate elevated concentrations of hydrogen at both poles; it does not tell us the form of the hydrogen. Map courtesy of D. Lawrence, Los Alamos National Laboratory. Hydrogen has been detected at the poles by Lunar Prospector in 1999. Is it water ice???
6
Lunar Prospector Impact – July 31, 1999 South pole impact at end of mission Low angle (6.3°), low mass (161 kg), and low velocity (1.69 km/s) less than ideal for water ice detection. No water detected. Results not conclusive. South pole impact at end of mission Low angle (6.3°), low mass (161 kg), and low velocity (1.69 km/s) less than ideal for water ice detection. No water detected. Results not conclusive.
7
How could there be water at the lunar poles? The sun never gets more then several degrees about the polar horizon, thus topography can provide “permanent” shade. Permanently shadowed regions (PSRs) may have temperatures < -200° C (-328° F). Over the history of the Moon, when comets or asteroids impact the Moon's surface they briefly produce a very tenuous atmosphere that quickly disperses into space. However, PSRs could act as cold-traps. Volatile gasses that enter could condense and accumulate for billions of years. Clementine Mosaic - South Pole
8
Where will we look?
9
How can we look for water? Lunar Reconnaissance Orbiter LRO Lunar Crater Observation and Sensing Satellite LCROSS
10
Lunar Reconnaissance Orbiter LROC – image and map the lunar surface in unprecedented detail LOLA – provide precise global lunar topographic data through laser altimetry LAMP – remotely probe the Moon’s permanently shadowed regions CRaTER - characterize the global lunar radiation environment DIVINER – measure lunar surface temperatures LEND – measure neutron flux to study hydrogen concentrations in lunar soil LROC – image and map the lunar surface in unprecedented detail LOLA – provide precise global lunar topographic data through laser altimetry LAMP – remotely probe the Moon’s permanently shadowed regions CRaTER - characterize the global lunar radiation environment DIVINER – measure lunar surface temperatures LEND – measure neutron flux to study hydrogen concentrations in lunar soil
11
LRO Mission Overview On-board propulsion system used to capture at the Moon, insert into and maintain 50 km mean altitude circular polar reconnaissance orbit. 1 year exploration mission followed by handover to NASA science mission directorate. On-board propulsion system used to capture at the Moon, insert into and maintain 50 km mean altitude circular polar reconnaissance orbit. 1 year exploration mission followed by handover to NASA science mission directorate. Minimum Energy Lunar Transfer Lunar Orbit Insertion Sequence Commissioning Phase, 30 x 216 km Altitude Quasi-Frozen Orbit, Up to 60 Days Polar Mapping Phase, 50 km Altitude Circular Orbit, At least 1 Year
12
LCROSS Mission Concept Impact the Moon at 2.5 km/sec with a Centaur upper stage and create an ejecta cloud that may reach over 10 km about the surface Observe the impact and ejecta with instruments that can detect water Impact the Moon at 2.5 km/sec with a Centaur upper stage and create an ejecta cloud that may reach over 10 km about the surface Observe the impact and ejecta with instruments that can detect water Ejecta Curtain Peter Schultz
13
Excavating with 6.5-7 billion Joules ~200 metric tons (220 tons) minimum of regolith will be excavated Crater estimated to have ~20-25 m diameter and ~3 depth Similar in size to East Crater at Apollo 11 landing site ~200 metric tons (220 tons) minimum of regolith will be excavated Crater estimated to have ~20-25 m diameter and ~3 depth Similar in size to East Crater at Apollo 11 landing site
14
LCROSS Mission System Shepherding Spacecraft: guides and aims the Centaur to its target and carries all of the critical instrumentation. Centaur Upper Stage: provides the thrust to get us from Earth orbit to the Moon and will then be used as an impactor Shepherding Spacecraft: guides and aims the Centaur to its target and carries all of the critical instrumentation. Centaur Upper Stage: provides the thrust to get us from Earth orbit to the Moon and will then be used as an impactor 14.5 m
15
LCROSS Instruments
16
Scheduled Launch: June 2009 Both LCROSS and LRO will share space aboard an Atlas V launch vehicle Launch will occur at Cape Canaveral Both LCROSS and LRO will share space aboard an Atlas V launch vehicle Launch will occur at Cape Canaveral
17
Centaur-LCROSS-LRO at TLI
18
LRO Separation
19
LCROSS Lunar Flyby: L + 5 days
20
LCROSS Trajectory: The Long and Winding Road Flyby transitions to Lunar Gravity Assist Lunar Return Orbits (LGALRO) Multiple LGALRO orbits about Earth (~38 day period) Long transit also provides time to vent any remaining fuel from Centaur Flyby transitions to Lunar Gravity Assist Lunar Return Orbits (LGALRO) Multiple LGALRO orbits about Earth (~38 day period) Long transit also provides time to vent any remaining fuel from Centaur
21
LCROSS Separation: Impact - 9 hrs
22
Centaur Impact
24
Into the Plume During the next 4 minutes, the Shepherding Spacecraft descends into the debris plume, measuring its morphology and composition, and transmitting this information back to Earth. The Shepherding Spacecraft then ends its mission with a second impact on the Moon During the next 4 minutes, the Shepherding Spacecraft descends into the debris plume, measuring its morphology and composition, and transmitting this information back to Earth. The Shepherding Spacecraft then ends its mission with a second impact on the Moon
25
Impact Observation Campaign
26
We believe reasonable grade amateur telescopes may be able to witness the impact plume. This is an exciting mission! www.amateurastronomy.org
27
Student Telemetry Program GAVRT – Goldstone Apple Valley Radio Telescope run by Lewis Center for Educational Research 34m DSS-12 & DSS-13 dishes Used by thousands of K-12 students around the world GAVRT – Goldstone Apple Valley Radio Telescope run by Lewis Center for Educational Research 34m DSS-12 & DSS-13 dishes Used by thousands of K-12 students around the world
28
Student Telemetry Program Monitor spacecraft omni during LGALRO transit Conduct Doppler studies en route Monitor medium gain transmissions during terminal approach and determine time of LOS Outstanding partnership opportunity for other mission post LCROSS, including LRO! Monitor spacecraft omni during LGALRO transit Conduct Doppler studies en route Monitor medium gain transmissions during terminal approach and determine time of LOS Outstanding partnership opportunity for other mission post LCROSS, including LRO!
29
Timing is everything! LCROSS mission in 2009 corresponds with International Year of Astronomy Also corresponds with International Polar Year. (Note: NASA’s IPY focus is on 6 poles – those of the Earth, Moon, and Mars) Also corresponds with 50 th anniversary of NASA LCROSS mission in 2009 corresponds with International Year of Astronomy Also corresponds with International Polar Year. (Note: NASA’s IPY focus is on 6 poles – those of the Earth, Moon, and Mars) Also corresponds with 50 th anniversary of NASA
30
LRO/LCROSS Launch Preview How Where When
31
We will use the Atlas V Launch Vehicle Latest version in the Atlas family of boosters Early Atlas boosters were used for manned Mercury missions 1962-63 Atlas V has become a mainstay of U.S. satellite launches NASA has used Atlas V to launch MRO to Mars in 2004 and New Horizons to Pluto and the Kuiper Belt in 2006 How?
32
We will launch from Space Launch Complex 41 (SLC-41) at Cape Canaveral Helios probes to the Sun Viking probes to Mars Voyager planetary flyby and deep space probes Mars Reconnaissance Orbiter New Horizons spacecraft to Pluto and Kuiper Belt Where?
33
Atlas V first stage arrived by cargo aircraft
34
Vertical Integration Facility
35
What’s going to happen? First stage delivered to VIF
36
First stage lifted into VIF
38
Centaur stacked on first stage
39
LRO and LCROSS will be stacked onto Centaur
40
Mobile Launch Platform will transport spacecraft from VIF to pad
41
When? LRO/LCROSS scheduled for June launch Currently looking at an early October impact for LCROSS Impact is currently targeting South Pole of the Moon
42
Questions
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.