Download presentation
Presentation is loading. Please wait.
Published byBarnard Scott Newton Modified over 9 years ago
1
The Standard Model and Beyond Harrison B. Prosper 6 July, 2010 Fermilab Summer Lecture Series
2
2 Where Do We Come From? What Are We? Where Are We Going? Paul Gauguin (1897) Museum of Fine Arts, Boston
3
The Standard Model
4
4 What is the Standard Model? quantum field theory The Standard Model (SM) is a quantum field theory excitations quantum fields that describes the excitations of quantum fields in spacetime particles We interpret these excitations as particles
5
Matter Up quark Down quark e ElectronAntielectron Neutrino ud
6
Forces 1(Gluons) Strong Force 1(Gluons) Binds protons and neutrons to form nuclei 10 -2 (Photon) Electromagnetic Force 10 -2 (Photon) Binds electrons and nuclei to form atoms 10 -5 (W & Z Bosons) Weak Force10 -5 (W & Z Bosons) Causes radioactivity 10 -39 (Graviton) Gravitational Force10 -39 (Graviton) Binds matter on large scales
7
1897 Discovery, Electron – 1897 J.J Thomson 1995 Discovery, Top Quark – 1995 CDF & DØ A Century of High Energy Physics
8
1897 – ELECTRON discoveryThomson 1909 – PROTONdiscovery Rutherford 1928 – ANTIMATTER theoryDirac 1930 – NEUTRINO theoryPauli 1932 – NEUTRONdiscoveryChadwick 1932 – POSITRONdiscoveryAnderson 1935 – EXCHANGEtheoryYukawa 1948 – QEDtheoryFeynman,… 1961 - ELECTROWEAK theoryGlashow 1964 – QUARKtheoryGell-Man, Zweig 1964 – HIGGStheoryHiggs, Englert,… 1967 – ELECTROWEAK theoryWeinberg, Salam,… A Century of Particle Physics A Century of Particle Physics
9
1971 – 73 QCDtheory‘t Hooft, Veltman, Gell-Man, Frisch, Gross, Wilzcek, Politzer 1974 – CHARMdiscoveryTing, Richter 1977 – BOTTOMdiscoveryLederman 1979 – GLUONJADE 1979 – GLUONdiscoveryTASSO, JADE, MARK-J, PLUTO 1983 – W & ZdiscoveryRubbia/UA1, UA2 1995 – TOPDØ 1995 – TOPdiscovery DØ & CDF A Century of Particle Physics
10
N Neutron Proton P e Electron νeνe Anti-electron neutrino Fermi’s 1934 theory of beta- decay Enrico Fermi 1901 - 1954 1934 – Theory of Beta Decay
11
11 1935 – Particle Exchange Theory Hideki Yukawa (1935) showed that potential energy the potential energy between two particles has the form mparticle m is the mass of the particle exchanged between the them R = hc mc R = hc / mc 2 is the range of the force Hideki Yukawa 1907 - 1981
12
12 1948 – Quantum Electrodynamics Feynman invented a systematic way to calculate the force between electrically charged particles, based on Yukawa’s idea of particle exchange g g y y f Richard P. Feynman 1918 - 1988 Feynman Diagram
13
N Neutron Proton P e Electron The Weak Force Given the success of QED it was natural to try to create an analogous theory of the weak force νeνe Anti-electron neutrino
14
N Neutron Proton P e Electron The Weak Force Given the success of QED it was natural to try to create an analogous theory of the weak force νeνe Anti-electron neutrino W-W-
15
15 1961 – The Electroweak Theory Glashow Theory+ Higgs Theory Electroweak Theory (1967) Steven Weinberg Abdus Salam Sheldon Glashow (1961)
16
ude sμ νeνe νμνμ Quarks Leptons +2/3-1/3 -1 0 1964 – The Quark Model Gell-Man and Zweig
17
17 The Quark Model u u d d d u ProtonNeutron uu u Delta++ The Delta++ puzzle +10+2
18
u s d e νeνe Quarks Leptons +2/3-1/3 -1 0 The Quark Model u uu d dd s ss color charge One possible solution: color charge (Greenberg, Frizsch, Gell-Man, Leutwyler ) μ νμνμ
19
u u u d u d u d u 19 The Quark Model ProtonNeutronDelta++ Problem solved ! +10+2
20
20 1971 – The Theories Make Sense! Martinus Veltman Gerard 't Hooft 1971 - Proved that theories of the sort created by Glashow, Weinberg and Salam are consistent
21
The Strong Force Proton u ud u ud u ud g g g u ud u ud u ud 1972-73 Quantum Chromodynamics (QCD) Gross Politzer Wilczek
22
22 Discovery of the Gluon 1979 TASSO MARK-JJADE PLUTO DESY Hamburg, Germany
23
23 Discovery of Top the Quark 1995 CDFDØ Fermilab
24
u uu d dde b bb c cc s ss gggggggg ZW+W+ ee Quarks Leptons +2/3-1/3 -1 0 I II III BosonsFermions The Standard Model H t tt W-W-
25
…And Beyond
26
26 Supersymmetry Compositeness Strings Multiverse Technicolor Extra Dimensions Brane Worlds
27
27 Puzzles The Identity Puzzle What makes a top quark a top quark, an electron an electron, and a neutrino a neutrino? (Chris Quigg, 2007) The Mass Puzzle What is the origin of the mass of fundamental particles? The Matter Puzzle Why is there overwhelmingly more matter than antimatter?
28
28 The Just-So Puzzle What determines the values of the Standard Model parameters? Or, are we special? The Gravity Puzzle strongemweakgravity1: 10 -2 : 10 -5 : 10 -39 Why strong: em: weak: gravity = 1: 10 -2 : 10 -5 : 10 -39 ? The Dark Matter Puzzle What is dark matter? The Dark Energy Puzzle Why is dark energy? Puzzles
29
The Mass Puzzle u d u Total mass 9.6 MeV Total mass 938 MeV !! The Proton Basket 2.3 MeV 5 MeV 2.3 MeV
30
The Mass Puzzle – A Solution? B. Robson, “The Generation Model and the Origin of Mass”, Int. J. Mod. Phys. E18 (2009) TT V TT T T V V V V V V V V T V V T T V T T T
31
The Just-So Puzzle d u d Neutron Proton u d u 2.3 MeV 5.0 MeV _______ 9.6 MeV 5.0 MeV 2.3 MeV _______ 12.3 MeV 938.3 MeV – 9.6 MeV 928.7 MeV 939.6 MeV –12.3 MeV 927.3 MeV Are we special?
32
Life in the Multiverse Alejandro Jenkins Florida State University Scientific American January 2010
33
33 The Gravity Puzzle 10 -39
34
Gravity on the Brane 34 Isaac Newton (1687) Gauss’ Law Our 3-D brane
35
Gravity in 3 + n Dimensions 35 Arkani-Hamed, Dimopoulos, Dvali (1998) Gauss’ Law Our 3-D brane
36
36 R Gravity in 3 + n Dimensions Suppose that gravity can propagate a distance R away from our 3-D brane world
37
37 When r >> R, the gravity force should look like Newton’s law of gravity R This yields the relation G = G n / R n Gravity in 3 + n Dimensions
38
Searching for Branes at Fermilab! 38 G One way: look for photon + unexplained amounts of missing momentum
39
39 The Era of the Large Hadron Collider The Era of the Large Hadron Collider CERN Geneva
40
40 The End CERN
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.